
CSC 242 Course Guide
Last updated: 6/10/2015
Author: Amber Settle, based on materials and comments by Ljubomir Perkovic and
Marcus Schaefer

Course Description

An intermediate course in problem solving, algorithms and programming. Programming
skills are further strengthened through more complex and larger programming
assignments. The assignments will also be used to introduce different Computer Science
areas (e.g. a Client/Server application for the Distributed Systems area). Classes and
object oriented programming are motivated and introduced. PREREQUISITE: CSC 241

Prerequisites and audience

It is very important that students taking CSC 242 have CSC 241 or an equivalent class.
Students who have some programming experience should take CSC 243 instead of CSC
242 (or CSC 241).

In particular, the following text is helpful for the syllabus:

You must have taken CSC 241: Introduction to Computer Science I or an equivalent
course that introduces problem-solving techniques and programming Python and earned a
passing grade (C- or better). I will also assume that:

• You know how to create, debug, compile, and run Python, and you use a
reasonable coding style (i.e. your code is easy to read and relatively concise)

• You know Python's basic control structures and types
• You can solve basic algorithmic problems

The abilities of the students vary significantly quarter to quarter. This impacts the topics
that can be covered (see the week-by-week topics section below). Winter quarter
students tend to be the strongest and Fall quarter students the weakest.

Learning goals

This course is the second of a two-course sequence introducing computer science skills,
including problem solving, algorithm development, recursion, and programming using
Python. In this course, we will apply these skills in several application areas of computer
science: graphical user interface (GUI) development, database development, and Internet
and distributed computing. The concept of a class and object-oriented programming will
be motivated and introduced.

The following is helpful for the syllabus:

After you have taken this class:
• You will strengthen your Python programming skills
• You will know how to design classes and understand the fundamental principles

of object-oriented programming
• You will be able to design basic graphical user interfaces
• You will be able to apply recursion as a problem-solving and programming

technique
• You will be able to write simple Internet client programs
• You will have a basic understanding of the database API

Textbook

Sections of CSC 242 taught during or after Winter 2016:
Introduction to Computer Science with Python, 2nd edition (ebook), Ljubomir Perkovic,
Wiley, 2015.

ISBN (ebook): 978-1-118-89105-6

Instruct students to obtain the ebook version of the 2nd edition. The print version no
longer has the case studies (some of which are used in the course).

If a student buys a print copy and needs access to the case studies, they are available as
an ebook supplement (currently for $12.40) at
http://store.vitalsource.com/search?q=9781119185390&search.x=26&search.y=9&search
=search. The ISBN for the supplement is 9781119185390.

Sections of CSC 242 taught during or before Fall 2015:
Introduction to Computer Science with Python, Ljubomir Perkovic, Wiley, 2012.

Week-by-Week Syllabus

The course follows the textbook through Chapters 7, 8, 9, 10, 11, and 12 in that order.
Chapters 10 and 11 (recursion and web development) take the majority of the time, and
Chapter 12 (databases) often gets slighted due to a lack of time.

Week Topic Chapter(s)
1 Namespaces and scope; an

introduction to object-
oriented programming

7 and 8

2 Object-oriented
programming

8

3 Object-oriented
programming and an
introduction to graphical-
user interface development
and event-driven

8 and 9

http://store.vitalsource.com/search?q=9781119185390&search.x=26&search.y=9&search=search
http://store.vitalsource.com/search?q=9781119185390&search.x=26&search.y=9&search=search
http://www.wiley.com/WileyCDA/WileyTitle/productCd-EHEP002019.html

programming
4 Graphical-user interfaces 9
5 Recursion and the midterm 10
6 A discussion of the

midterm; recursion, sorting,
and searching

10

7 More about recursion 10
8 An introduction to HTML

and WWW application
development

11

9 WWW application
development

11

10 The database API 12

Depending on the abilities of the students, object-oriented programming may take longer
than two weeks. This tends to delay everything and push databases at least partially out
of the class.

Students generally find CSC 242 to be several orders of magnitude harder than CSC 241.
The concepts covered are more complex, and students need to write significantly more
code. It is worthwhile to tell them this. Students who earned a B- or lower in CSC 241
should be ready to devote extra time to the class. It’s not unusual for students to drop an
entire grade in CSC 242 as compared to their CSC 241 grades.

Particularly troublesome for students are object-oriented programming and recursion. Be
ready to devote extra time to these topics. It’s more important that they understand those
topics than for them to see databases in any significant way.

Labs

Each section of CSC 242 has its own associated lab session. The instructor is responsible
for organizing the lab session. The time in the lab will be supervised by a teaching
assistant, and the instructor should convey the topics and assessments to the TA at least
2-3 days before the lab. A set of activities reinforcing new material or preparing them for
class examples or assignments works well. Typically group work is highly encouraged
for the lab, so the students learn from each other and learn to work in groups. It is best if
the students submit work individually, acknowledging any collaboration in comments at
the top of the file submitted. See Appendix C for a sample lab. Appendix D includes
grading criteria developed for the lab sessions.

In the Classroom

Although it is helpful to show rather than tell, often a large amount of material must be
covered initially for each chapter. Pre-prepared examples that are shared with the
students prior to class can be invaluable in making reasonable progress through the

material. Those examples can be both modified and demonstrated throughout the class
session.

It is also crucial that students have an opportunity to develop their own code based on the
examples seen in class. For example, students simply do not grasp how communication
between methods in a class works until they have written a class and written a program
that uses the class. Allowing them practice on small examples during class time before
they reach the lab or the assignments will help them to not crash as viciously as they
might otherwise.

Warnings about Python and the curriculum

Note that if you give a module a name that coincides with an existing module (queue and
random are two examples), then the built-in module will no longer be visible when
Python is run in the directory containing that module. For the queue example, this causes
Python to crash. Avoid calling any module you write queue.py.

When writing regular expressions, be aware that \b can lead to problems, since it is a
special string character. One way to avoid the problem is to escape it by writing : ‘\\b’.
You can also raw strings to find all words in a text as in: re.findall(r”\b(\w+)\b”, text).

Be aware that many of the HTML parsing and crawling programs as written in the book
will not work on regular web pages for two reasons. First, some pages block automatic
down-loading. Some pages also use special characters, which trip up the parser, probably
on purpose. Being aware of this when you write your solutions to exercises and
assignments and warning students about this is advised.

When discussing the Python database API, be aware that tuples with single items can
cause some problems. In particular, if you are using the ? style of pulling data from a
database table, as is recommended for security reasons, you need to be careful if there is
only one ?, e.g. cur.execute(‘SELECT * FROM enrolled WHERE courseID = ? AND
studentID = ?’, (cid,sid)) is fine, but cur.execute(‘SELECT * FROM enrolled WHERE
courseID = ?’, (cid)) will give you an error. The problem is that it does not recognize
(cid) as a tuple, so the solution is: cur.execute(‘SELECT * FROM enrolled WHERE
courseID = ?’, tuple([cid])) or simply use a list: cur.execute(‘SELECT * FROM enrolled
WHERE courseID = ? AND studentID = ?’, [cid,sid]) or cur.execute(‘SELECT * FROM
enrolled WHERE courseID = ?’, [cid])

Homework

As with CSC 241, you should enforce high standards on homework submissions. For
example, a no-late-submissions policy is fairly standard, with the caveat that the lowest
score for each type of assessment is dropped.

It may be the case that you need to provide students with some code on assignments as a
starting place in order to create an assignment that can be reasonably done in a week.

The students also develop complex, interacting classes and methods, so it’s highly
recommended that you require them to submit the Python files. Often figuring out what
is wrong with their code and how far it is away from a correct solution is something that
requires playing with the code. Doing that in your head from a printout can be a
challenge.

In Chapter 8 of the text, many of the exercises focus on writing classes in isolation from
any other program. The emphasis is on writing the classes and not on the use of those
classes. I strongly recommend that you require students to both write classes and write
programs that use those classes. Assignments that involve file processing are particularly
useful. Students simply don’t understand what classes do until they have created a series
of objects and used them for some purpose. Appendix B gives an example of an
assignment of this type.

Students find recursion to be difficult. They will often go to great lengths to avoid
dealing with recursion, especially recursive functions that return values. It is strongly
recommended that you disallow certain constructs on recursive assignments to ensure
that they using recursion effectively. In particular, tell students that they are not allowed
to use global variables, that they may not change the number of parameters of the
function, and where appropriate, that loops are not allowed.

Exams

Both midterm and final exams are given in the lab, so the students can solve the problems
on the computer. The best setting for the dropbox is one exam submission per student,
since otherwise the student can leave the classroom and submit a new exam later.
However, it is a good backup plan to have a USB stick ready to collect exams in case of
emergency.

Tell techstaff (helpdesk@cdm.depaul.edu) well before the midterm date to turn off the
Internet in the classroom with the exception of access to D2L, so students can download
the midterm (and any supplementary files) and submit their solutions. Please note that
the final exam typically involves writing a web crawler of some sort. The students need
to have access to Web pages to test it, so don’t turn off Internet access for the final exam.

Plagiarism

Plagiarism is less of an issue in this class than in CSC 241, but it is helpful to remind the
students that they need to do independent work. The typical policy is to allow students to
collaborate on lab assignments but to require independent work on assignments.
Appendix A contains a sample academic integrity statement written by a CSC 241
instructor. It is useful to have students sign it before grading any of their homework.

One exception are the exercises found in the chapter on recursion. Many of the exercises
in the book have solutions posted online. You are strongly advised to write your own
variations on these exercise to ensure that students aren’t copying.

mailto:helpdesk@cdm.depaul.edu

Setting assignment due dates so that students are starting a new assignment during the lab
session is advisable. Assignment due dates that have students completing an assignment
close to the lab session encourages a lot of collaboration, which can be a problem.

References

The website for the textbook includes lots of useful information, including all the code
from the text, a solutions manual, lecture PowerPoint slides, and errata. Use of the
PowerPoint slides hasn’t been typical for DePaul instructors, since using the IDLE editor
and Python files have proven quite effective.

Python:
• Python.org includes:

• Python 3.4.3 downloads (for Windows, MacOS, and others)
• Tutorial
• Reference

http://python.org/
https://www.python.org/downloads/release/python-343/
http://docs.python.org/py3k/tutorial/
http://docs.python.org/py3k/reference/

Appendix A: Academic Integrity Statement

Academic Integrity Pledge for Course Assessments
I, _(your name here)
___, pledge that I
have read the Academic Integrity policy of DePaul University. The full policy can be
found here: http://academicintegrity.depaul.edu/AcademicIntegrityPolicy.pdf and other
resources on Academic Integrity can be found here: http://academicintegrity.depaul.edu/
The following is an excerpt from the Academic Integrity policy:

Cheating: Cheating is any action that violates university norms or instructor's
guidelines for the preparation and submission of assignments. This includes but is
not limited to unauthorized access to examination materials prior to the
examination itself, use or possession of unauthorized materials during the
examination or quiz; having someone take an examination in one's place-copying
from another student; unauthorized assistance to another student; or acceptance of
such assistance.

Plagiarism: Plagiarism is a major form of academic dishonesty involving the
presentation of the work of another as one's own. Plagiarism includes but is not
limited to the following:

• The direct copying of any source, such as written and verbal material, computer
files, audio disks, video programs or musical scores, whether published or
unpublished, in whole or part, without proper acknowledgement that it is
someone else's.

• Copying of any source in whole or part without proper acknowledgement.
• Submitting as one's own work a report, examination paper, computer file, lab

report or other assignment that has been prepared by someone else. This
includes research papers purchased from any other person or agency.

• The paraphrasing of another's work or ideas without proper acknowledgement.

Complicity: Complicity is any intentional attempt to facilitate any of the
violations described above. This includes but is not limited to allowing another
student to copy from a paper or test document; providing any kind of material—
including one’s research, data, or writing—to another student if one believes it
might be misrepresented to a teacher or university official; providing information
about or answers to test questions.

http://academicintegrity.depaul.edu/AcademicIntegrityPolicy.pdf
http://academicintegrity.depaul.edu/

I understand that programming assignments must reflect individual work. I may consult the
course notes, course recordings, course tutorials, the course textbook, other textbooks, or online
resources as well as discuss the assignments with Dr. Settle, Mr. Summers, or the CDM tutors.
However, I may not under any circumstances submit work that is not my own. I understand that I
should not discuss the assignments in the course with my classmates. Further, I understand that
working so closely with anyone so as to produce identical or near identical code, except for Dr.
Settle and Mr. Summers, is a violation of the Academic Integrity policy.

During the scheduled lab for the class I understand I will be working on exercises that may be
completed using the course notes, course recordings, course tutorials, the course textbook, other
textbooks, or online resources. On the lab exercises I am allowed to consult with Dr. Settle (if
available online), Mr. Summers, and other students in the class. If I write any code with another
student on a lab exercise, that student’s name must be included in the lab exercise submission.
Not providing credit to my lab collaborators on exercise submissions is not allowed. If I spend
lab time on assignments I understand that I must follow the rules described in the paragraph
above, which are different than the rules for the lab exercises.

I understand that the midterm and final exams for this course are closed book. I may use a fixed
number of pages of notes for the exams, with the number to be specified in the exam logistics
later in the quarter. The sheet(s) of notes must be handed in with my exam. I may also use a
calculator during the exam. I may not use any other written materials. The exams are scheduled
in the lab, but I may only use the Python interpreter (either through IDLE or using the command-
line interface) on the lab machines during the exams. I may not bring my own laptop, or any
other electronic device, into the exams. I also may not communicate with anyone other than Dr.
Settle during the exams.

I understand that failing to adhere to any of the above stated policies on the assessments for the
course is a violation of the Academic Integrity Policy at DePaul University. I understand that if
this occurs Dr. Settle will file a violation of the Academic Integrity policy for me and that I will
receive a 0 on the associated assessment(s).

Signature: ___

Date: __________________________

Appendix B: Object-oriented programming assignment

Implement the classes and functions below and save them into a file called
csc242hw1.py. I am not providing any template file for this, so you must create it
yourself. Please follow the formatting conventions found in the examples discussed in
class. You must also include appropriate doc strings (e.g. strings that appear on the
line following the class or function header) to the class and functions that clearly and
concisely describe what the class and functions are doing. A submission without doc
strings will not earn full credit.

1. Develop a class Score (that is a subclass of the object class) supporting five
methods. The class is intended to hold a running score, for example for a game or
a class. The methods it supports are:

a. initialize(self, init) which takes a numeric value as a parameter and sets
the initial score of the object to the parameter. It also sets the number of
scores that have contributed to the total to 1.

b. updateOne(self, amount) which takes a numeric amount as a parameter
and increases the total score of the object by that amount. It also increases
the number of scores contributing to the total by 1.

c. updateMany(self, lst) which takes a list as a parameter. The list
represents a series of scores. The method updates the total to include the
sum of all the scores in the list and updates the number of scores
contributing to the total by the number of items found in the list.

d. get(self) which takes no parameters and returns the current score in the
object.

e. average(self) which takes no parameters and returns the average of the
scores that have contributed to the total score.

The following shows how the Score class and its methods could be used:

2. Write a function processScores() that takes the name of a file as a parameter.
The first line of the file is a number, which indicates the initial score for a Score
object. The remaining lines are pairs: the even-numbered lines contain a
character and the odd-numbered lines contain either a number or a list. The
character will be one of 'o', 'O', 'm', or 'M', indicating that the next line contains
either a single score ('o' or 'O') or a list of scores ('m' or 'M'). The function will
create a new Score object and then process each line or pairs of lines of the file by
calling the appropriate method of theScore object. As it processes each line or
pairs of lines, it will print the information about the action being taken. The first
line will be a call to the initialize() method and the remaining pairs of lines will
be calls either to the updateOne() or updateMany() methods. Once the file has
been processed, the function will print the final score, the average score, and
return the Score object. The following shows what would be displayed for an
example file. The example file can be found on the D2L site under the
Assignment 1 section on the Content page. Please note that your function must
work on an arbitrary file that consists of valid lines. You cannot assume anything
about the file except that it contains lines that have the format described above.

3. Write a function processAllScores() that takes a list of file names as a parameter.
Each of the file names corresponds to a text file that contains a list of actions to be
taken on a Score object. The function will process each file in the list by
calling processScores() function defined in the problem above. The object
that processScores() returns will be added to a list. The processAllScores()
function will return the list of objects once all files have been processed. The
following shows what would be displayed for an example run with three files.
The example files can be found on the D2L site under the Assignment 1 section
on the Content page. Please note that your function must work on an arbitrary
list. You cannot assume that you will always be given three files.

Submitting the assignment

You must submit the assignment using the assignment 1 dropbox on the D2L site. Submit
only a single Python file (csc242hw1.py) with your implementation in it. Submissions
after the deadline listed above will be automatically rejected by the system. See the
syllabus for the grading policy.

You must also sign and submit an Academic Integrity pledge. The pledges will be made
available in class during the first two weeks of the quarter. The Academic Integrity
pledge can also be found in the Assignments and Logistics and general information
sections on the Content page of the D2L site. By the deadline you must have signed the
pledge and either submitted in person or upload it with your csc242hw1.py file to the
assignment 1 dropbox.

http://d2l.depaul.edu/
http://d2l.depaul.edu/

Appendix C: A Sample Lab

Logistics

These exercises should be completed during the lab on Tuesday, September 11th. In
order to receive full credit for the lab, you must attend the session, remain in the lab for at
least 45 minutes, and submit a file that contains solutions to all these exercises. A
grading rubric for lab sessions is available.

You are encouraged to work in groups on lab exercises. If you do work with someone,
please include the name(s) of your collaborator(s) at the top of the file you submit. For
more information about collaboration policies in this class, see the Academic Integrity
Pledge posted to the D2L site.

If you complete the lab exercise early, please read Chapters 7 and 8 in the textbook and
work on the first assignment. You must remain in the lab for at least 45 minutes to earn
full credit. Please be aware that the assignments are individual assessments. You are not
allowed to discuss the assignments with your classmates. If you need help on the
assignment, please ask Andrew Summers.

Review exercise

This exercise is a review of material covered in CSC 241. You should find it to be
straightforward and simple. If that's not the case, please be sure to review your CSC 241
materials as a part of your first week of work for this class.

Implement the function printTwoLargest() that inputs an arbitrary number of positive
numbers from the user. The input of numbers stops when the first negative or zero value
is entered by the user. The function then prints the two largest values entered by the
user. If no positive numbers are entered a message to that effect is printed instead of
printing any numbers. The information below shows how you would call the
function printTwoLargest() and what it would display for a couple of different sample
runs:

http://facweb.cdm.depaul.edu/asettle/csc242/info/labRubric.html
http://facweb.cdm.depaul.edu/asettle/csc242/info/labRubric.html
http://d2l.depaul.edu/
http://facweb.cdm.depaul.edu/asettle/csc242/hw/assign1.html

New exercises

These exercises cover the material we have learned this week in class.

1. Modify the original Animal class found in the file csc242lab1.py included in the
zip file for this lab to include two additional methods:

a. setWeight() which takes an integer as a parameter and sets the animal's
weight (in pounds) to the value of the parameter

b. getKilos() which takes no parameters and returns the weight of the
animal in kilograms

You should also modify the speak() method to display the animal's weight (in
pounds) in addition to the animal's species and language. The following shows
how the Animal class and its new/modified methods could be used:

2. Implement the function processAnimals() that takes as a parameter the name of
an input file. The input file contains zero or more lines with the format: species,
language, weight where species is a string representing an animal's species,
language is a string representing an animal's language, and weight is a number
representing an animal's weight in pounds. The items on each line are separated
by commas. The processAnimals() function should read all lines in the file,
creating an Animal object for each line and placing the object into a list. The
function also displays to the screen the result of calling speak() on each object in
the list it created. The function returns the list of objects created or an empty list
if the file didn't contain any lines. Don't forget to close the input file. The
information below shows how you would call the function processAnimals() on
an example file. The file used below is included in the zip file that contains the
class lab1.py file provided on the D2L site:

Submitting the exercises

You must submit your solution to the exercises using the lab 1 dropbox on the D2L site.
Submit only a single text file (csc242lab1.py) with each of the completed functions and
classes for the lab exercises in it. Submissions after the deadline listed above will be
automatically rejected by the system. See the syllabus for the grading policy.

Appendix D: Lab Grading Criteria
(http://facweb.cdm.depaul.edu/asettle/csc242/info/labRubric.html)

Lab grading rubric

This page describes a grading rubric for the lab sessions associated with the course.

Each lab session is worth 10 points. There are two things that contribute to your grade in
the lab: your attendance at the lab session and your submission of solutions to the lab
exercises. In order to receive full points for attendance, you must arrive no later than
10:15 am, leave when the exercises are complete or 11:00 am whichever comes later, and
work the entire time on the lab exercises or some other activity associated with the
course. To receive full points for the lab exercises, you must submit a file containing a
solution to all exercises on the lab assignment by the deadline specified in the exercise
set. A specific rubric for each area is given below:

Exercise completion Points
earned

Submits a file by the deadline containing a solution for all of the lab
exercises 5

Submits a file by the deadline containing a solution to a majority of the lab
exercises 4

Submits a file by the deadline containing at least a partial solution to a
majority of the lab exercises 3

Submits a file by the deadline containing at least a partial solution to some
of the lab exercises 2

Does not submit any solutions to the lab exercises 0

http://d2l.depaul.edu/
http://facweb.cdm.depaul.edu/asettle/csc242/info/labRubric.html

Lab attendance Points
earned

Arrives on time (i.e. no later than 10:15 am), stays for the duration of the lab
(i.e. when the exercises are done but no earlier than 11:00 am), and works the
entire time either on the lab exercises or on something related to the course,
including doing the assignment, reading the textbook or other Python
documentation, or studying for exams.

5

Arrives on time (i.e. no later than 10:15 am), stays for the duration of the lab
(i.e. when the exercises are done but no earlier than 11:00 am), but does not
work the entire time on something related to the course, including doing the
assignment, reading the textbook or other Python documentation, or studying
for exams.

4

Arrives late (i.e. later than 10:15 am) or does not stay for the duration of the lab
(i.e. leaves before the lab exercises are complete and before 45 minutes have
passed) but not both, and works the entire time on something related to the
course, including doing the assignment, reading the textbook or other Python
documentation, or studying for exams.

3

Arrives late (i.e. later than 10:15 am) or does not stay for the duration of the lab
(i.e. leaves before the lab exercises are complete and before 45 minutes have
passed) but not both, and does not work the entire time on something related to
the course, including doing the assignment, reading the textbook or other
Python documentation, or studying for exams.

2

Arrives late (i.e. later than 10:15 am) and does not stay for the duration of the
lab (i.e. before the lab exercises are complete and before 45 minutes have
passed).

1

Does not attend the lab 0

	Learning goals
	This course is the second of a two-course sequence introducing computer science skills, including problem solving, algorithm development, recursion, and programming using Python. In this course, we will apply these skills in several application areas...
	Appendix A: Academic Integrity Statement
	Appendix B: Object-oriented programming assignment
	Submitting the assignment

	Appendix C: A Sample Lab
	Logistics
	Review exercise
	New exercises
	Submitting the exercises

	Appendix D: Lab Grading Criteria
	Lab grading rubric

