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Abstract: This paper documents key aspects of an effort to implement a unification-based parser for general use in Java environments.  The primary focus of this effort was the parsing engine itself, but in the interest of completeness, a fully functional system was developed.  The system included a Java-based parsing engine modeled on Shieber’s (1992) abstract parsing algorithm, a rudimentary English language grammar, and the integration of WordNet (Miller, 1995) for lexicon support.  The system development also included a computationally practical implementation of the logic modifications defined by Tomuro and Lytinen (2001) to address the problem of nonminimal derivations in Shieber’s algorithm.
1.  Introduction
Although natural languages such as English can be represented by context free grammars (CFGs) they are too rich and complex for representation by easily computable CFG subclasses, and in general, these languages seem to defy attempts to define them concisely.

Let us look at the problem of subject-verb agreement as one example of this inherent complexity.  A grammar rule for representing a simple sentence consisting of a noun-phrase and a verb-phrase can be written as S ( NP VP.  When we introduce the requirement for agreement between the noun-phrase and the verb-phrase on such features as person and gender, our single grammar rule suddenly explodes into many rules.  The explosion in grammar rules resulting from cases such as this causes several problems.  For example, the added grammar complexity quickly becomes unmanageable and we lose generality and the ability to model language in a way similar to how we think about and discuss it.  Most important from the perspective of computational complexity is that more grammar rules result in decreased parsing performance.

A seemingly natural result of the search for more understandable and concise ways to represent natural language is constraint-based grammar formalisms.  Jurafsky and Martin (2000) present the idea as one in which grammatical categories (e.g., parts of speech) and grammar rules should be thought of as “objects that can have complex sets of properties [i.e., constraints] associated with them.”
The sentence parser described by this paper implements the above idea using an approach based on feature structures and unification.  Implementation of this parsing approach (along with various modifications) was the primary focus of a more extensive development effort for Java environments.  In addition to the parsing engine, the system also included a rudimentary English language grammar and a bridge to WordNet (Miller, 1995) for lexicon support.
The choice of Java as a programming language was driven by both practicality and need.  Java is freely available, widely used, highly portable, and the primary programming language used in many university environments.  A Java-based parser implementation can be more readily used by a wider audience.  For instance, it could serve as a learning tool in an introductory AI course where students with Java (but not LISP) skills would be the norm.
2.  Implementing the Parsing Engine

As a first step in building the parser, Shieber’s abstract parsing algorithm for the unification-based parsing of context-free grammars (Shieber, 1992) was implemented.  The specific implementation was a version of Earley’s parsing algorithm (Earley, 1970) modified to support a constraint-based grammar with subsumption checks and unification.  Many of the details for this dynamic programming approach were based on the data structures and algorithms presented in Jurafsky and Martin (2000).
Subsequent to the initial implementation, several modifications were made to improve runtime efficiency, simplify grammar definition, and eliminate the generation of nonminimal parse trees allowed by Shieber’s algorithm (Tomuro and Lytinen, 2001).  These modifications are presented later in this paper.
Shieber’s Algorithm
Shieber’s parsing algorithm is based on a set of four nondeterministic inference rules used to generate items from grammar productions and previously generated items.  These items are defined by a quintuple <i, j, p, M, d> where i and j are indices into the sentence being parsed; p is a grammar production rule; M is a model (parse tree); and d is an index into the production rule (i.e., the dot position) indicating how much of the rule has been completed.  Figure 1 shows the definition of a grammar production rule and a graphical representation of its model.
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Rule: S ( NP VP

  (cat) = S

  (1 cat) = NP

  (2 cat) = VP

  (1 head) = (2 head)

Figure 1.  Example grammar production and model
To understand the four logic rules, it is important to understand three operations Shieber makes use of throughout the logic.  The first operation is unification (which Shieber denotes as 
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[image: image2] M2) is the least model that contains all features from both M1 and M2 (if such a model exists).  Figure 2 illustrates two examples in which two feature structures (i.e., models) are unified.  The first unification is successful, the second fails.
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Figure 2.  Unification example

The second operation is extraction (which Shieber denotes as / ).  The statement M / p results in the extraction of the submodel at path p from the model M (if such a submodel exists).  Figure 3 illustrates an example in which a submodel is extracted from a model.
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Figure 3.  Extraction example

The third operation is embedding (which Shieber denotes as \ ).  Embedding is essentially the inverse of extraction.  The statement M \ p results in the embedding of the model M at path p (i.e., the result is the least model M' such that M' / p = M).  Figure 4 shows an example of embedding a model under a specified path.
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Figure 4.  Embedding example

Shieber’s four logic rules are shown in Figure 5.  In this paper we omit the 0 path used by Shieber for the left hand side (LHS) constituent of production rules, thus placing the LHS constituent at the root level.  This change does not affect the logic for the purposes of this paper or the implemented parser.
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Figure 5.  Shieber’s logic rules
The Initial Item rule is used to generate an initial item based on the start production p0.  The function mm(Φ) refers to the minimal model for Φ.  The Prediction rule is used to predict new items that might possibly advance an existing item.  This is driven by a top-down identification of a grammar production p', that is predicted by the existing item’s production p, and whose model mm(Φ') can successfully unify with the appropriate portion of the existing item’s model.  The function ρ(Φ) refers to any monotonic operation subject to the restriction that for all Φ, there exists a formula Φ' ( Φ such that ρ(mm(Φ)) = mm(Φ').  For instance, ρ can be used to limit the level of information used in predicting items.  The extraction operator / is used in this case to indicate the d+1 submodel of the M model.
The Scanning rule is used to generate new items that advance an existing item.  This occurs when the position following the dot in the item’s grammar rule is a part of speech that can be matched by the next word in the string being parsed.  This is, of course, subject to the appropriate and successful unification of the existing item’s model and the lexical grammar rule’s model.  The Completion rule is also used to generate new items that advance an existing item.  This occurs when the position following the dot in the item’s grammar rule can be matched by another item that is complete.  Once again, this is subject to the appropriate and successful unification of the two items’ models.
Implementing Feature Structures

The feature structures used to represent grammatical properties in the parser engine were implemented in Java as directed acyclic graph (DAG) objects.  These objects were modeled after Jurafsky and Martin’s (2000) DAG extensions and notation.  This extended model made it easier to implement unification and feature structures that have shared values.
A Dag object consists of three fields (_structure, _atomSet, and _pointer), that correspond roughly to the three roles the object can perform (feature structure, atomic symbol set, and shared reference).  Feature structures are essentially sets of feature-value pairs, where a feature is a symbol, and a value is either an atomic symbol or another feature structure.
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Figure 6.  Example feature structures
The _structure and _atomSet fields are used as one might expect.  If a Dag object is acting as a feature structure, the _structure field is a map containing feature-value pairs.  If the value is another feature structure, the map will contain a reference to another Dag object acting as a feature structure.  If the value is a symbol or set of symbols (described later in this paper), the map will contain a reference to another Dag object acting as an atomic symbol set.  If a Dag object is acting as an atomic symbol set, the _atomSet field is a set of one or more atomic symbols representing the value in a feature structure.  Figure 6 shows examples of Dag objects acting as feature structures and atomic symbols to represent a simple grammar rule and a lexical rule.


Figure 7.  Example feature structure using _pointer
The _pointer field is somewhat less traditional and is used when a Dag object is a stand-in for another Dag object (i.e., one that contains the value we are really looking for).  This mechanism is brought into use when changing the value reference of a feature structure.  When we change a value, we can not just create a new Dag and update the value reference.  This is because the original Dag may be referenced by multiple feature structures, and we do not want to have to find and update all of those references.  Instead we leave all of the references to the original Dag unchanged, and set the original Dag’s _pointer field to reference the new Dag that contains the new value.  Now, whenever we follow any path that leads to this value, we are redirected to the new Dag.  All of the redirection is, of course, handled automatically by the Dag object’s methods.  This redirection mechanism was found to be particularly valuable in speeding up the unification of feature structures.  Figure 7 shows an example of Dag objects using the _pointer field to depict the result of unifying the examples from Figure 6.

Eliminating Nonminimal Parse Trees

Tomuro and Lytinen (2001) demonstrated that Shieber’s algorithm can, at times, produce nonminimal parse trees.  These nonminimal parses contain features which are not in the production rules used to derive the parse.  Tomuro and Lytinen proposed a definition of parse trees which does not allow nonminimal parses, and a modified version of Shieber’s abstract algorithm that enforces their definition of minimality.
One instance in which the problem occurs is when two items representing similar phrasal production rules predict two new items that use a third lexical production rule.  The difference between these two new items is an extra feature each received from its parent item (these features are different for each item).  Assuming a word in the sentence can be used to match both of these new items, each can then be used to further both of the original parent items, creating another four new items.  Two of these four new items, unfortunately contain an extra feature that was from the wrong parent.  These two items are nonminimal derivations in the sense that they contain features that did not originate with the original licensing production rule.  The end result is one or more nonminimal parse trees for the input sentence.
The algorithm proposed by Tomuro and Lytinen disallows nonminimal derivations by incorporating parent pointers that restricts the items that can be advanced by the Completion rule to only those that are direct parents of a completed item.  Figure 8 shows the modified version of Shieber’s four logic rules.  The items used in the rules have been expanded into a 3-tuple that include a unique reference id for each item, a parent reference pointer that is set by the Prediction rule, and the original quintuple from Shieber’s algorithm.
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Figure 8.  Tomuro and Lytinen’s modified logic rules

Tomuro and Lytinen did not delve much into implementation, though they did offer some insight into issues they felt would likely need to be addressed.  Of particular note, was a concern that the parent pointer scheme would complicate the process of avoiding redundant items and thereby impact computational efficiency in a negative fashion.  The next few paragraphs outline key elements of a practical implementation approach used to extend the original Shieber-style parsing engine to support Tomuro and Lytinen’s modified logic rules.
To ensure that redundant and unnecessary items are discarded, a subsumption check is used to discard items that are more specific than other items that are produced, but only for items produced by the Prediction rule.  The test for subsumption is based only on the original 5-tuple from Shieber’s algorithm (the ids and parents are ignored).  We are allowed to subsume items in this way because any subsequent item that would have matched and advanced the discarded, more-specific item will also match and advance the more general item.  As long as we can trace the more general item back to both its parent item and the parent item of the discarded, more-specific item, nothing is lost.
Items produced by the Scanning and Completion rules are discarded only if they are identical to other items that are produced.  As with the application of the subsumption check above, the test for equality is based only on the 5-tuple from Shieber’s original algorithm (the ids and parents are ignored).  Subsumption is not used in implementing these “bottom-up” rules, so that valid parses with more specific information are not filtered out.  This could happen, for example, if varying amounts of semantic information were included with different senses of a word in the lexicon.
To make all of this work, the second argument in the modified logic’s 3-tuple is implemented as a set of parent pointers, rather than just a single parent pointer.  This allows just a single chart item to be used when generated items are discarded.  For example, when an item is subsumed by another item, its parent pointer is added to the parent set of the subsuming item.
In addition to helping resolve the issue of nonminimal parse trees, the use of parent pointers also reduced the number of cases that needed to be considered when applying the Completion rule.  Since each chart item keeps track of the parent items that predicted it, it is no longer necessary to scan the chart for potential items to complete.
Left-Corner Filtering
Left-corner filtering is a technique that helps reduce the number of items generated by the Prediction rule.  The idea is to prevent the generation of items that can not possibly be matched by the current word in the sentence being parsed.  This is accomplished through the use of a left-corner table that identifies for each grammatical category (e.g., S, NP, etc.) those parts of speech that could be the first word on the left-most edge of any derivation for that category.  This left-corner table is precompiled for the grammar before any sentences are parsed.  The table is subsequently used by the method implementing the Prediction rule to filter-out any items based on productions whose first right hand side constituent could never be matched by the current word.
Tests run to compare parsing with the filter enabled against parsing with the filter disabled, showed that using the filter provides significant performance gains.  Figures 9 and 10 show the savings in the number of chart items generated and the number of Dag objects used when parsing twelve sentences selected from system test cases.  On average, enabling left-corner filtering resulted in 31.56% fewer Dags used and 37.00% fewer chart items generated.
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Figure 9.  The effect of left-corner filtering on the

number of chart items generated
[image: image8.emf]Dag Objects Used During Parsing

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12

Sentence Number

# of Dags Used (in thousands)

Filter On

Filter Off


Figure 10.  The effect of left-corner filtering on the

number of Dag objects used
The specific approach used to extend the parsing engine for this effort was a simple one that only looked at which parts of speech could be matched by the current word.  A more restrictive approach to left-corner filtering that takes full advantage of unification and any specified constraints in the grammar has been left for a future development effort.  Tomuro (1999) describes one possible implementation of such an approach.
Support for Symbol Disjunction

Another enhancement made to the parsing engine was to extend feature structures to support disjunctive sets for feature-value symbols.  This allows multiple grammar rules or lexical entries that differ only in the value specified for a particular constraint to be combined into a single rule or entry.

Word:

  (cat) = Pronoun

  (word) = you

  (head number) = {sg, pl}

  (head agreement) = -3sg

  (head pro_type) = {subj, obj}

Figure 11.  Example lexicon entry using symbol disjunction
Figure 11 shows a lexicon entry for the pronoun “you”.  By using disjunctive sets of symbols this single lexicon entry is able to indicate that “you” can be either singular or plural, and can act as either a subject pronoun or an object pronoun.  Disjunctive sets can similarly be used in grammar rules (e.g., a single rule can be used to define a sentence frame that allows either transitive or bi-transitive verbs).  Implementing symbol disjunction for the parsing engine resulted in both reducing the number of items generated during parsing and simplifying the definition of the grammar and lexicon.
In order to implement disjunctive sets, their impact on several key algorithms had to be considered:

· The equality checking method was changed to verify that the two symbol sets are equal (i.e., that they contain the same members).
· The subsumption checking method was changed to verify that the symbol set for the subsumed item was more specific than the symbol set for the subsuming item.  This was done by ensuring that the subsumed item’s symbol set was a subset of the subsuming item’s symbol set.  In the case where one of the items did not have a value for a particular feature its symbol set was treated as an infinite set containing all symbols.

· To modify the unification algorithm, the unification of two disjunctive symbol sets was defined as the intersection of the two sets.  If the intersection results in the empty set, unification fails.
The disjunctive symbol sets were implemented as Java HashSets.  This kept the performance impact of disjunction support to a minimum.  Complexity for the comparison of two sets is at worst linear with respect to the larger set size (which is typically quite small), and is often constant, as in the case where a single symbol is being looked-up in a second symbol set.  For performance reasons, disjunction support was only implemented for atomic symbol values.  The performance impact for atomic symbol values was manageable, but the implementation of disjunctive sets of features structures could easily have an exponential impact on overall performance.
3.  Constructing the Grammar and Lexicon
The goal in creating the grammar and lexicon for this project was to provide a sufficiently complex environment for testing the parsing engine, and to demonstrate the parser’s integration into a more complete sentence parsing application.  As a result, the grammar and lexicon do not represent an attempt to create an exhaustive representation of the English language.  The grammar is focused primarily on declarative sentences, and is intended to be reasonably complex without being complete.  The lexicon is also not meant to be complete, but instead reflects a decision to utilize a generally available lexicon, rather than build one from scratch.
Integrating WordNet

The primary lexicon used for the system is WordNet 2.0.  WordNet is a lexical reference system developed by the Cognitive Science Laboratory at Princeton University.  It provides a lexicon of English nouns, verbs, adverbs and adjectives along with several types of semantic relationship information.
The text-based version of the WordNet dictionary was accessed from the system using JWNL (Java WordNet Library) release 1.3, a Java API for accessing WordNet-style dictionaries.  At this time, the system’s integration with WordNet is limited to recognizing words and identifying their corresponding part of speech (i.e., noun, verb, adverb or adjective).  However, WordNet has several features which could be used to further enhance the system as part of a future effort.  For example, WordNet includes information on sentence frames for verbs that could be used to reduce the number of ambiguous parses.
Since WordNet is limited in scope, a supplemental text-based lexicon was developed to provide support for other parts of speech such as pronouns, prepositions, conjunctions, modals and determiners.  The supplemental lexicon also provides additional information for irregular verbs, so that the system can better handle recognition of different verb forms (e.g., present, past-participle, etc.).
4.  Evaluating the System
In addition to numerous tests conducted for the individual classes and components, the complete system underwent an overall performance test designed to both exercise the parsing engine, and establish a baseline for sentence parsing accuracy.  The system was tested against four sets of sentences selected from children’s reading primers (DK Readers) published by DK Publishing.  The sets allowed testing with representative sentences of varied length and complexity, reflecting the different reading level of each primer.  Table 1 summarizes the test results.
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Table 1.  Performance testing results
As expected, the parsing accuracy declines as the reading level of the sentences increases.  It is important to note, however, that all of the failed parses could be traced to shortcomings in the grammar and/or lexicon.  None of the unsuccessful parses could be attributed to the parsing engine itself.  The engine performed correctly for all 163 test sentences, and since it was the primary focus of this project, the overall implementation effort can be viewed as very successful.
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