AACORN: A CBR Recommender for Academic Advising

JJ Sandvig, Robin Burke

School of Computer Science, Telecommunications, and Information Systems

DePaul University, Chicago, USA

Abstract

Academic advising is a knowledge-intensive process of assessing a student's interests and determining the best course progression that satisfies graduation requirements. An advisor may have to have detailed knowledge of curriculum and student aptitudes as well as course offerings and time constraints. This report introduces AACORN, a course recommendation system that uses the course histories as the basis for course advising. By reusing the experience embodied in historical student's transcripts, AACORN can make reasonable suggestions with only a limited amount of domain knowledge. The system uses the edit distance between two course histories, as well as other heuristics to determine the similarity between course histories.

Keywords: Recommender System, Case-Based Reasoning, Academic Advising, Edit Distance, Levenshtein Distance.

1
Introduction

Advising students of what courses they should enroll is a much more complicated problem than it first appears. At the highest level, the purpose is to guide a student both to reach personal academic goals and to satisfy the course requirements for graduation. Thus, making an intelligent recommendation is a balancing act. It is necessary to have an understanding of the student’s interests and strengths in order to choose from a list of potential courses those that will be the most worthwhile. Equally important is to have an understanding of the rules for graduation in order to keep the student focused on the relevant courses.

Programs of study are notoriously complex, with an infinite possibility of course progressions. It can be difficult to wade through the requirements and recognize the appropriate course for a given situation. More than one student has finished what they thought was their final quarter, only to discover they were missing a required social science credit that should have been completed long ago. Equally dreadful, they discover that the final requirement is a course offered only once per year and it has already passed for the current academic year.

To complicate matters further, programs are constantly in flux; requirements are revised and courses are replaced. The same course may be cross-listed under different names, or two different courses may have essentially the same objectives. Thus, the decision process of an academic advisor requires a significant amount of up-to-date and in-depth domain knowledge.

A typical software solution to automating academic advising might include a rule-based Expert System. However, the sheer amount of knowledge required would make it extremely difficult to express in sequential rules. In addition, the dynamic nature of program requirements would turn maintenance of the system into a crippling task. Our solution is to create a case-based reasoning system that can automatically adapt to the changes in the domain.

Case-based reasoning (CBR) is a problem solving method that uses specific knowledge of previous experiences in order to adapt a solution for a new problem [1]. This is similar to the way humans solve problems. It is the process of remembering an old plan, reusing it, and changing it to fit the current situation [11]. Thus, case-based reasoning is well suited to the academic advising domain because it allows a system to reuse the experience of other students in making a recommendation.

In this paper we present AACORN, a case-based recommender system for academic advising. The following sections describe the high-level architecture of the system and discuss the case-based reasoning components. Afterward, we discuss the results of the system, closing with planned future work.

2
Advising Domain

The School of Computer Science, Telecommunications, and Information Systems (CTI) at DePaul University is a typical example of an advising domain. Besides being familiar to us, the graduate program offers a relatively small and closed system with enough complications to make academic advising an interesting problem. Therefore, we have focused specifically on the DePaul CTI graduate program for our research.

DePaul CTI offers ten academic programs of study, including Computer Science, Software Engineering, Distributed Systems, Computer Graphics and Animation, Human-Computer Interaction, and more. Each program has its own graduation requirements, but typically consists of 13 courses plus a number of undergraduate equivalence courses. Programs are broken into phases of study that are program specific, and usually include a prerequisite phase, core knowledge or fundamental phase, and an advanced phase. A prerequisite phase consists of undergraduate equivalence courses that must be satisfied but do not count toward graduation. However, a student may waive a prerequisite phase course with equivalent study at another institution.

Phase structure varies between programs. In many cases, a student chooses one course from each of several sets of related courses. In other cases, a student must choose from a number of sets and complete every course in the set. Some courses fall into multiple categories and can satisfy several requirements.

Although not a set rule, courses are generally prerequisite, core, or advanced level. A prerequisite course traditionally has a catalog number of 300 or below and corresponds to an undergraduate course. Core level courses are fundamental knowledge courses with a catalog number in the 400’s. Advanced level courses have a catalog number in the 500’s or 600’s. They are specialized courses for in-depth study of a particular subject. Most programs require four or five advanced courses for graduation.

3
AACORN

AACORN (Academic Advisor COurse Recommendation eNgine) is a case-based reasoning system for recommending courses to graduate students at DePaul CTI. The system is currently in development and includes the essential functionality required of an academic advising system. In particular, it is capable of taking input information about a student, including academic program and course history, and making a reasonable recommendation of several courses the student could enroll in the next quarter.

The basic assumption AACORN makes is that similar students will have similar course histories. Two students in the same program and with similar interests are likely to take many of the same courses. In this way, a student seeking a recommendation can use the experience of students that have completed the graduate program as a template. Any course found in the template that the student has not yet taken is likely a good course to enroll. The following diagram illustrates the overall flow of the system.

[image: image1.emf]Retrieval

Student

Data

Constraint

Filtering

Case Histories

Student

Constraints

Filtered

Courses

Ranked

Courses

Adaptation

Recommendation

Current

Schedule

Course

Prerequisite

Knowledge

Academic

Program

Knowledge

Figure 1: Architecture of the System
The system is broken into two main components, a case-based reasoning component and a constraint satisfaction component. The case-based reasoning component first retrieves the most similar student histories for the given inquiry. It then adapts a solution by building a list of courses found in the retrieved histories but not found in the query student data. The system ranks the courses according to the perceived relevance to the student. This initial list represents the proposed recommendation.

The constraint satisfaction component acts as a filter for the proposed solution. It begins by removing any course that the student is not able to enroll in the next quarter. This includes courses not offered in the next quarter and courses for which the student does not satisfy the prerequisites. The filter next removes courses that are not relevant to satisfying the student’s academic program requirements. For example, if either of two essentially identical courses satisfies a requirement and the student has already completed one, the filter removes the other course from the proposed solution. Finally, the filter will use constraints provided by the student to present a ranking of course recommendations.

In terms of the CBR cycle, RETRIEVE – REUSE – REVISE – RETAIN [1], the system’s case-based reasoning component defines the retrieve and reuse steps. The component retrieves student histories and reuses them to adapt a solution. The constraint satisfaction component defines the revise step, reworking a solution until obtaining the desired result. There is no retain step in AACORN. The output is a recommendation of courses to enroll and cannot be persisted as a solution. Cases must be constructed from actual student history data. Ultimately, the student, in consultation with the advisor, must make the final choice of which course to enroll; it is this enrollment information that comprises the solution and is used to make future recommendations, not the recommendation itself.

Although the illustration is for a complete system, we have implemented only the core functionality at this time. We have implemented the case-base of student histories and the student data query interface. The system is able to successfully retrieve the most similar students to the query and adapt a solution of courses missing from the query history. A ranking algorithm is in place to push relevant courses to the top of the recommendation list. Finally, a schedule constraint removes courses that are not currently being offered.

In its present form, the system is able to produce a functional recommendation for a student. The remaining constraints, though desirable for a production system, are not required. The system builds the same list of recommendations regardless of the implemented constraints; constraints serve only to filter the list and present a more focused recommendation. A student may filter the list manually, removing courses that are not appropriate, and receive the same quality recommendation as if the system had filtered the list automatically.
4
Case Representation

AACORN represents a case as a structured object containing information about a student. A case includes four top-level features: (1) the academic program of the student; (2) the curriculum term; (3) the student’s overall grade point average; and (4) the course history of the student. The course history is a hierarchical feature, further broken into nested sub-features containing information about each specific course the student has enrolled. The heterogeneous nature of the course history makes a flat feature vector insufficient to represent a case. The following diagram illustrates the case representation.

[image: image2.emf]
Figure 2: Case Representation
The system constructs a case by using student transcripts together with program and course information to map features. The four top-level features are common among every case. Every student must declare an academic program and the curriculum term, which collectively defines the graduation requirements of the student. The grade point average and the course history of the student define the student’s progress toward graduation.

A student’s course history detail represents a unique ordered sequence of course sub-features. Each element of the sequence is an occurrence of a course that the student has enrolled and corresponds to an actual point in time. Thus, not every course will be present in a course history but a course could appear more than once in a course history if the student re-takes it.

A course feature contains three logical levels of detail. The catalog information is a representation of the course itself, including the unique catalog number and a description of the course objectives. The enrollment offering is a specific class section of the course. Enrollment offering includes a section number that is unique given the term, defined by the academic year and quarter. In addition, enrollment offering includes the instructor, the time and day of the class, and its location. Location includes the campus, building, and room number of the offering, or alternatively indicates that the offering is an on-line distance-learning course with no physical location. The final level of detail within a course is the student specific outcome of the offering, defined as a letter grade.
5
Retrieval

Currently, AACORN does not use a knowledge-intensive approach to case retrieval [1]. Although there are areas that could benefit from a semantic basis for similarity, we have chosen not to implement them at this time. Instead, we have focused on a syntactic similarity assessment. There are two reasons for this. One is a practical matter: as will be shown, the domain knowledge necessary for a semantic analysis is difficult to acquire. The other reason is that we wanted to infer as much knowledge as possible from the case representation before complicating the implementation with extensive domain knowledge.

Case retrieval is achieved using a k-nearest neighbor technique. The system calculates the relative distance of the target case (the student making an inquiry) to each source case (the case histories) and retrieves the k number of cases that are closest in proximity [11]. These similar cases form the context for a recommendation.

If there is an ideal set of cases that should be returned from a given query, the trick is in finding a similarity metric that is able to retrieve the cases without casting a net too wide. Similarity assessment in AACORN is a three-tier process. The global similarity between two cases is measured as a summation of each top-level feature similarity (course history, academic program, curriculum term, and GPA). Each feature in turn calculates a local similarity based only on that particular attribute. The case history similarity is a special case. Because case history includes nested course sub-features, the local similarity of each course is used to calculate an overall similarity between course histories. At all stages, the system normalizes the similarity values between zero and one; therefore, distance can be expressed as 1 – similarity and vice-versa.

5.1
Global Similarity

The retrieval component assesses the global similarity between cases by calculating the Euclidean distance of the top-level features. The actual implementation used in the system is a modified Heterogeneous Euclidean-Overlap Metric [12], defined as follows:

[image: image3.wmf]
Such that x and y are the two input cases, m is the number of feature attributes, wa is the weight of attribute a, and da() is a distance measure that calculates the local similarity for attribute a.

AACORN weights each feature according to its ability to distinguish a relevant case, and normalizes such that the sum of all weights is one. In order to optimize the weights, we use a stochastic hill-climbing weight assessment with random re-start [9]. The algorithm randomly chooses a starting state and computes all possible next states, choosing randomly from states that improve the outcome, and repeats until finding a maximum. This is a greedy algorithm and is prone to being caught in a local maximum. Therefore, the test is run a number of times and the best overall outcome is chosen as the final state. With random re-start, the algorithm is guaranteed to eventually find the overall maximum because it will randomly pick the maximum state. In reality only a certain number of re-starts is practical, but the algorithm still produces a good answer.

A dominating percentage of the global similarity metric weight is divided between academic program and course history. As intuition would suggest, these features have a greater affect on similarity than curriculum term or GPA. Curriculum term and GPA are not very distinguishing. Although curriculum term defines the particular requirement revision of a given academic program, it is completely dependent on academic program and does not contain any context by itself. Similarly, GPA does not contain contextual information about a student, but rather serves to evaluate the academic performance contained in the course history.

Academic program is a large influence on the similarity metric. It is a natural classifier of similar students, as students in the same program likely have similar academic interests. In addition, students in the same program are bound by the same basic course requirements for graduation.

Course history turns out to be the greatest contributor to similarity. In a sense, the courses completed by a student implicitly define the requirements of the academic program and curriculum year. As students in the same program are likely to have similar course histories, so students with similar histories are likely to be in the same program. In addition, changes in program requirements from year to year are inherently reflected in the history. Finally, two students in different programs but with similar histories create a context for similar programs.

5.2
Local Similarity

The local similarity computation between features is straightforward. Curriculum terms are considered totally similar if they are an exact match, and terms which are 5 or more years apart are considered totally dissimilar, with the remaining falling somewhere in between. GPA similarity is determined by the absolute value of subtracting the two grade points and dividing by 4.0 (the maximum possible GPA at DePaul) to normalize. Program similarity is simply binary; two programs are either the same or they are completely dissimilar. Although possible to come up with a finer grained description of similarity (for example, software engineering is probably more similar to distributed systems than database management), it was determined that such an effort would require a significant amount of domain knowledge and have potentially little overall effect on accuracy.

Local similarity between courses in AACORN is currently a binary measure; either two courses have the same catalog number or they are completely dissimilar. This could use some refinement. Many factors come into play when determining course similarity. Did the same instructor teach both courses? Were both courses offered at the same location, or was one offered on-line? Does one course replace another, or are they cross-listed as the same course?

Ultimately, the goal is to determine if two courses have similar subject matter. This is a very knowledge intensive question and requires interpretation of the academic purpose of a course and the program requirements it satisfies. Often, courses with different catalog numbers cover the same subjects. For example, DePaul offers DS 575 Information Retrieval and ECT 584 Web Data Mining which cover almost identical techniques for extracting and interpreting information from text based sources. In certain cases, identical courses are cross-listed under different catalog numbers, such as CSC 380/CSC 480 Introduction to Artificial Intelligence. Eventually, courses are retired in favor of one or more new courses, such as CSC 415 and CSC416 Foundations of Computer Science I & II being replaced by CSC 383 Data Structures and Algorithms in Java. Thus, determining a fine-grained similarity measure for courses is not a trivial task.

At an early stage in our research, we attempted to use a naïve method for extracting some basic information about a course. The idea was to gain a broader concept of course similarity over the binary approach by taking into account the phase of the program in which the course belongs. At first glance, a course in the prerequisite phase should have more in common with another prerequisite phase course than with an advanced course. One of the challenges to this approach is that a course could potentially be in different phases for different academic programs. Without the necessary information of exactly which course is in which phase for a particular program, we attempted to extract some knowledge from the course number. A 300 level course or below was considered a prerequisite course, a 400 level course was considered a core course, and a 500 level course and above was considered an advanced course.

As it turned out, this approach did not improve similarity assessment, and in fact hindered the assessment in many cases. A prerequisite phase course such as CSC 309 Object-Oriented Programming in C++ does not necessarily have semantic association to another prerequisite course such as TDC 361 Basic Communication Systems. On the other hand, CSC 309 has a much more obvious semantic relationship to an advanced phase course such as GPH 575 Advanced Graphics Development. Not only is CSC 309 a prerequisite for GPH 575, it is also the foundation upon which graphics development depends. The problem is that course similarity is too knowledge intensive for such a naïve approach to be successful.

One possibility for a more knowledge-intensive course similarity would be to incorporate the text based course description. In an offline process, courses could be classified into categories using information retrieval techniques, for example k-means [8]. This has the benefit of not slowing down the retrieval system during a user query, but it also means there is no way to distinguish between courses in the same category. Some experimentation would be required to find the optimal number of categories which is not so broad as to water down the semantic association, yet not so narrow that it is essentially one course per category.

Another possibility to improve course similarity assessment would be to use a graph of prerequisite dependence. Every course represents a node in the graph with edges to its prerequisites and to the courses of which it is a prerequisite. Similarity could be computed as the shortest path to a given course. This technique does not take into account the semantic relationship between courses, and so might be better used to augment the categorization technique described above.

5.3
Course History Similarity

A significant amount of our research has been in calculating the similarity between course histories. Much of a student’s academic interests can be inferred from the course history. A student interested in database administration will likely enroll in many database-related courses. A student with broad interests will likely enroll in many disparate courses. The course history also implies the academic program and curriculum term of a student. A student in the Software Engineering program is required to take certain courses or choose from a group of courses that is decidedly different from the courses required of a student in the Human-Computer Interaction program. Further, a student in the 2000 Software Engineering program is likely to have at least a subtle difference in requirements from a student in the 2004 Software Engineering program.

In addition, similarity between programs can be inferred from course histories. The Computer Science program at DePaul is the most technically oriented and flexible program. It includes many aspects of other programs and allows a student to gain a broad education while focusing on an area of interest. It is common for a student in the computer science program to take a number of software engineering courses, for example. Most academic programs at DePaul also have the same or very similar prerequisite courses. A student in the prerequisite phase of Distributed Systems may look almost identical to a student in the prerequisite phase of Computer, Information and Network Security. Thus, a recommendation need not depend entirely on similar students from the same academic program; this opens a whole avenue for recommending unique courses that may be very relevant to a student but not previously considered because it does not fall in the academic program curriculum.

Course history similarity could be determined by counting the overlap between two histories - the more courses in common, the more similar. However, this does not take into account the fact that some courses are more distinguishing than others are. If a student has five courses in common with another student, but all are prerequisite courses, this says less about their similarity than if the student has only four courses in common with a third student, but they are all advanced phase courses. The second case is without a doubt more helpful from a recommendation perspective. It says that the students have similar enough academic interests to have invested in taking the same advanced (and narrowly scoped) courses.

Since fewer students take an advanced course, it is necessarily more distinguishing when two students complete the same advanced course. In general, the less often a course is taken the more distinguishing it becomes. Therefore, AACORN weights each course by the inverse document frequency [4] - log (N / n) such that N is the total number of cases and n is the number of cases in which the course appears. A course that occurs in many or all histories is not discriminating and has a low weight, while a course that occurs in very few histories is discriminating and has a high weight.

Given the weight of each course, we could calculate similarity as the weighted Euclidean distance of the overlap. However, this model fails to account for any differences between histories that could affect the similarity. Courses that are not common between histories are surely as important as courses that are common. The model also fails to account for the ordering of a course history. Intuitively, the order in which a student enrolls in courses should make a difference. It directly affects the courses that are available to the student in future quarters by satisfying prerequisites, and therefore implies the student’s interests. Further, a student with a very similar course ordering to another is likely to be a better candidate for recommendation than a student with similar courses but a different ordering.

5.3.1
The Edit Distance Approach

A student’s course history may be described as a time sequence. At each segment of time there is an element corresponding to a course the student has enrolled. This is slightly oversimplified, as a course history is actually a partial ordering. A student may enroll in one or many courses in a single quarter, so there may be multiple elements within a single time segment. Further discussion of partial ordering is presented later; but for now, it is enough to simply consider course history as a time sequence.

Clearly, Euclidean distance is not satisfactory for calculating the similarity of a time sequence, and another technique must be used. Our solution is to calculate the edit distance (also known as Levenshtein distance) between two course histories. Edit distance can be described as the minimum total cost of transforming one sequence into another, given a set of edit operations and a cost function which defines the cost of each operation [2].

The basic edit distance operations are insertion, deletion, and replacement. Insertion is the action of adding an element to the target sequence; deletion is the action of removing an element from the source sequence; replacement is the action of substituting an element from the target sequence with an element from the source sequence. The replacement operation implies that the target and source elements have some correlation and may be logically replaced. This is reflected in the cost function of replacement. If a source and target element do not have a correlation, the replacement cost must be greater than the cost of deleting the source element and inserting the target element.

In the context of AACORN, the insertion cost function and the deletion cost function simply return the maximum cost of insertion/deletion multiplied by the inverse document frequency of the element. Thus, it is more expensive to insert or delete a discriminating course, and the more discriminating courses will have a larger affect on the overall edit distance cost. The replacement cost function is such that the maximum cost of replacing the source element with the target element is the maximum insertion cost of the target element plus the maximum deletion cost of the source element. The replacement cost is then determined by multiplying the maximum replacement cost by the distance from the source element to the target element.

The total edit distance cost is computed via a dynamic programming algorithm. The following recurrence relation defines the distance di,j between two sequences (a1, a2,…,ai) and (b1, b2,…,bj):

[image: image4.wmf]
The total edit distance of two sequences (a1, a2,…,an) and (b1, b2,…,bm) with n and m respective elements is calculated by storing the value di,j in an n+1 by m+1 matrix for all i and j such that 0 ≤ i ≤ n and 0 ≤ j ≤ m. Each row from 1 to n represents an element of the source sequence, and each column from 1 to m represents an element of the target sequence. The value of dn,m contains the total cost of transforming the source sequence into the target sequence.

In AACORN, the source sequence is the course history being tested for similarity and the target sequence is the course history for the student seeking a recommendation. Upon early testing of the edit distance algorithm, we discovered a problem stemming from the fact that the source course history is necessarily longer than the target course history. Additional courses in the source history must be used to make a recommendation, and presumably, the student has already completed their degree.

This causes a problem with the edit distance algorithm because any additional courses at the end of the source history incur a deletion cost. Thus, a long source history is unduly penalized for having more courses, even though a long history is exactly what is desired for making a recommendation. This is further exacerbated when the additional courses are discriminating, because they incur a much higher cost of deletion though they may be the ideal recommendation.

Our solution is to pass a shortened source history as input to the edit distance algorithm, such that the source and target histories map roughly to the same program phase. The source history is cut down to be the same length as the target history, plus a small number of extra courses. The extra courses serve to catch any potential overlap at the end of the history that might otherwise be cut off. This technique immediately had a beneficial effect on the quality of retrieved cases; many good cases that had previously been passed over were retrieved, helping to improve the recommendation.

5.3.2
Edit Distance with Partial Ordering

Calculating edit distance in the advising domain is also complicated because course histories are actually sequences with a partial ordering; a student at DePaul can take as many as five courses in a quarter. Although the standard edit distance depends on an ordered sequence, the ordering of the courses within a single quarter should not make a difference when calculating similarity.

For example, student A may take course W and X in the first quarter and Y and Z in the second quarter. Student B takes W, X, Y, and Z all in consecutive quarters. Student C takes X, W, Z, and Y all in consecutive quarters. Student A and B have identical course histories, and student A and C have identical course histories. However, student B and C clearly do not have identical course histories. It is difficult to measure this partial ordering with the standard edit distance.

[image: image5]
Figure 3: Example of a partial ordering
Note the partial ordering can be described in terms of a graph, and the question is then how to extend edit distance to facilitate graphs in addition to a string sequence. One alternative considered was to use a more general case of the string edit distance: the tree edit distance [13]. Each permutation of a course history can be represented as an acyclic graph, and the edit distance is then calculated as the minimum of the edit distances of each sub-tree. The algorithm is significantly more complicated than the string edit distance and has a much greater time and space complexity. Therefore, we opted not to implement the algorithm, as it would likely have diminishing returns.

Our solution is to simply make a final pass over the edit distance solution and minimize any cost where a course was both inserted and deleted. This is less stringent than allowing a partial ordering within a single quarter; any ordering is considered acceptable, albeit at a minimal cost. At first glance, this solution would seem to break down the entire concept of a sequence. However, it does not say that the order does not matter – only that a course that appears in both sequences should never incur a cost greater than the cost of inserting or deleting a course that only appears in one sequence. The implementation of a reorder cost in the edit distance algorithm gave a minor improvement to retrieval quality; enough to justify the simplicity over a tree edit distance.
6
Adaptation

The adaptation process uses the similar cases returned from the retrieval process and attempts to build a recommendation for the student performing a query. Retrieved cases vote on which courses to recommend. In general, any course found in a retrieved case but not found in the query history will be returned as a recommendation.

There is a two-step ranking process in raising the most relevant courses to the top of the recommendation list. First, the total number of votes a course receives determines its primary rank. Intuitively, a course that appears in all retrieved cases but is not found in the query history is a likely candidate for recommendation. A course that only appears in one similar case is less likely to be relevant as a recommendation.

In addition, it is necessary to weight each vote such that the more similar cases have more influence. This is done using the edit distance cost of the case. The cost is normalized, and the similarity is calculated as 1 – distance. This also helps to marginalize any distant cases without a need for threshold retrieval. A query may have several cases that are very similar to it, and they will all have relatively equal influence. On the other hand, a query may have only one relatively similar case. In this situation, the similar case will have a dominating influence, but other retrieved cases will continue to have a minor influence so there is the benefit of multiple votes. The similar case may not include a course that would be a good recommendation, but all distant cases together may contain the course and raise its ranking to a relevant position.

The secondary ranking within the adaptation step is a tiebreaker between recommendations. It could be that the top recommended courses are all referenced by the same retrieved cases. The courses would have equal rank with no way to distinguish between them. Therefore, the secondary ranking favors the most common courses among all cases by using 1 - inverse document frequency. All other things being equal, it is better to recommend a common course because it is likely to be generally applicable. Potentially, it is also a prerequisite for other courses within the same rank.

We also experimented with changing the weight of a recommended course based on the proximity location within the course history. A course that comes earlier in the history is given more weight than a course that comes later. The idea is that the earlier course may be more relevant to a student’s current recommendation. The first three potential recommendations in a retrieved case are given the full similarity weight of the case. The next three potential recommendations are given the similarity weight multiplied by a factor of .9, and so on.

As it turns out, the only significant changes this makes is to move prerequisite courses up in ranking. As expected, most prerequisite courses show up earlier in the course history and are given more influence in the recommendation. Surprisingly, other courses taken early in the history are not significantly affected.

Although it is appropriate to have prerequisite courses ranked higher than the courses they precede, this is already being done implicitly. It is not possible to enroll in a course unless the prerequisite is satisfied, so the prerequisite cannot occur less often within the history. Thus, it is unlikely for a course to be ranked higher than its prerequisite. Forcing prerequisites higher in ranking than the natural occurrence causes them to replace other relevant recommendations. These include advanced courses without prerequisites, or even worse, advanced courses with prerequisites the query history has already satisfied.

Advanced courses are important recommendations because they identify the interest of a student. Prerequisites are merely building blocks for the advanced courses. It is necessary to recommend a prerequisite as a means to taking an advanced course, but it should never overshadow an advanced course to which it is not related. Therefore, we decided not to implement proximity weighting in the adaptation step. Instead, we allow the implicit knowledge within student histories to determine course ranking.
7
Constraint Satisfaction

After retrieving similar cases and adapting a solution, the recommendation component returns a ranked list of potential course recommendations. This list represents every course completed by a retrieved case but not found in the query history, and is too large to make an accurate recommendation. Further steps must be taken to prune the list to a more manageable size. The system handles this via constraint satisfaction. There are two categories of constraints in the system: domain driven constraints and user driven preference satisfaction.

Domain constraints may include a schedule of classes for the current quarter, prerequisite requirements, academic program requirements, etc. For example, the system should not recommend a course if it is not being offered, nor should it recommend a course if the student has not satisfied the proper prerequisites. However, there is a certain degree of flexibility in a prerequisite constraint – a student may petition the instructor to opt out of a prerequisite – so the system must be conservative when removing such a recommendation.

A framework for domain constraints has been implemented in the system, however only current schedule constraints are fully operational at this time. Given course offerings for the current quarter, it is trivial to remove any recommendation that is not on the list. Prerequisite constraints are a more complicated issue. The data for prerequisites is not stored in a typical relational model at DePaul; instead, it is appended to the course description. One reason for this is lack of a standard concept for what constitutes a prerequisite. In certain instances, a prerequisite is simply defined as “any programming course” or “permission of instructor”. This is difficult to parse into a meaningful representation.

One possibility is to simply ignore such textual prerequisites and focus only on prerequisites that parse into actual course representations. Although feasible, this is no trivial task either. In many instances, prerequisites are represented as a Boolean expression such as “(course X or course Y) and course Z”. It is possible to parse such an expression. However, it is likely to remove valid recommendations because it is a strict notion of which courses satisfy the prerequisite.

In order to be usable, such an expression requires extensive domain knowledge. The system needs to know, for example, that a prerequisite to a recommended course replaces a course in the query history, and therefore it should not filter out the recommended course. Complicating matters, replacement is not necessarily a one-to-one relationship. A single course may be replaced by multiple courses and multiple courses may be replaced by a single course. Thus, a simple Boolean query can quickly explode into an exponential number of courses.

Preference satisfaction is more difficult to quantify. A set of preferences qualifies the relative value of a particular recommendation. For example, a student may prefer to abstain from courses on Wednesday night, but may relax the preference for a course that is an excellent recommendation. Likewise, a student may prefer to take a specific instructor, but another course may be more important to academic development and override the preference.

CP-nets [6] can be used to specify a preference relation and attach a level of importance to each constraint. A preference ranking defines a total preorder relationship between two outcomes under a ceteris paribus (all else being equal) assumption. A user is asked to specify the parent outcomes that affect each preference over a specific value. For example, a student may specify that a course offered on Monday is preferable to a course offered on Wednesday, unless the student’s favorite instructor only offers a Wednesday class. Given a CP-net, recommendations are ranked by constructing a sequence of increasingly preferred outcomes.

Critiques [7] can be used to gather preference constraints and refine the list of recommendations. A critique is a natural method for a student to express dissatisfaction with the current recommendation. By identifying a feature that is inadequate, a critique can be used to move the recommendation away from that particular outcome. For example, a student interested in software development is given a recommendation for an intensive software engineering course. The student applies the critique “more project management focus”, and the system shifts the recommendation to a course related to software development cycles. In this way, a student can navigate through the recommendation space until finding a suitable course.

8
Experimentation and Results

Our current set of data consists of 200 course histories of DePaul CTI graduate students chosen randomly from all academic programs. The histories range from 1987 to present. Only nine histories are from 2002 or later. In addition, Software Engineering is severely underrepresented with only two histories and Information Systems is overrepresented with a much larger percentage of cases than appropriate. We were unable to acquire a more relevant dataset in adequate time to use in experimentation; however, the current data is sufficient for our purposes.

The histories contain many anomalies as would be expected from a real world sampling. This includes students with courses well outside of the computer science domain, such as psychology and economics. It also includes students with both undergraduate and graduate histories from DePaul. In certain cases, students belong to a current curriculum term, yet have not enrolled in a class in five or more years.
Evaluation of the system presents a partial case from the case-base as a query and determines the quality of the generated recommendation. Using only a partial case allows us to compare the system’s recommendation to the course history of the student. The basic measure of evaluation is precision and recall [10]. Precision is the percentage of recommended courses that are relevant. Recall is the percentage of relevant courses that are recommended. Relevant courses are the set of courses removed from the partial case before being presented to the system as a query; in other words, the courses in which the student chose to enroll

After some experimentation, it became obvious that precision was not a meaningful measure and recall was not sufficient. Precision is very low because a recommendation includes all courses from the retrieved cases not found in the query, which can be substantial. The system uses constraints to prune the full set of recommendations; however, it does not filter constraints for evaluation. We need to evaluate the raw recommendation in order to measure the success of the system, and so precision is marginalized.

Although recall is important, we are interested in a deeper understanding of the solution space. In particular, we want to know if the relevant courses are high on the list of recommendations. Thus, we track the percentage of queries that contain any (and all) relevant courses in the top 5 and top 10 recommendations. We also track the average rank of all relevant courses and the average rank of the first relevant course. This allows us to measure the actual location of the relevant courses in the recommendation.

Finally, we track the recall within the top 5 and top 10 recommended courses. This is subtly different from the top 5 and top 10 percentage described above. Percentage tracks the number of queries with relevant courses, while recall tracks the percent of relevant courses that actually appear in a recommendation. Overall, top 10 recall is the most accurate judge of a good recommendation and we use this as the main measure of evaluation.
8.1
Leave-One-Out Test

A leave-one-out test systematically removes a case from the case-base and presents the removed case as a query to the system [5]. The system then uses the remainder of the case-base to produce a solution. This process repeats for every case in the case-base. The goal is for the system to reproduce the observed solution of a removed case consistently.

In AACORN, the removed case needs additional changes to make it an acceptable query for the system. In particular, it is necessary to remove several of the courses at the end of the course history in order to have something to recommend. The removed courses can be stored as the observed solution to the query and compared to the system’s recommendation, calculating the precision and recall. For each case, we run three leave-one-out tests: removing the last 3, 6, and 9 courses respectively. The observed solution consists of three courses immediately following the query history, standardizing the criteria for a good solution.

The following figures illustrate the outcome of running a leave-one-out test on the case-base. The tests ran using three different case history similarity measures: Euclidean distance, edit distance, and edit distance with reordering. In addition, the tests show the individual results for removing 3, 6, and 9 courses from a case, and the combined total.

[image: image6.emf]
[image: image7.emf][image: image8.emf]
Figure 4: System Recall
[image: image9.emf][image: image10.emf]
Figure 5: System Rank
An analysis of recall results shows edit distance to be an improvement over Euclidean distance. Although total recall does not show a clear preference, edit distance is consistently better in top 5 recall and top 10 recall. The benefit is not necessarily that edit distance will result in a higher quantity of relevant recommendations. Rather, it serves to retrieve similar cases that will result in a higher quality ranking of relevant recommendations.

Ideally, we would like all relevant recommendations to be at the top of the list. Average ranking results support edit distance as a means to higher quality recommendations over Euclidean distance. In every test, the average rank of a relevant recommendation is improved via edit distance. In certain cases, edit distance improves the average rank by as much as 10%. This is significant enough to potentially raise a relevant course out of obscurity and into a prominent position in the recommendation.

Edit distance with reordering shows a subtle improvement over the general algorithm in both recall and rank. The difference in rank is most notable when removing three courses from the history. As might be expected, a longer student history has a higher instance of partial ordering than a shorter student history. As we remove more courses from the history, there is a smaller probability of two courses being out of sequence. Edit distance with reordering is especially important for a student in advanced phases, where similarity is dependent upon narrowly scoped, highly focused courses. Although not drastic, it is enough of a quality boost to justify the simple implementation.

8.2
Professor Assessment

As a final evaluation of AACORN, we conducted a small experiment to test the system’s recommendations against those of human advisors. Six professors from DePaul University were asked to participate in the survey. Each received an identical set of six randomly chosen student histories from the case-base, plus a list of six possible course recommendations for each student [Appendix A]. The professors were asked to rank from one to six (best to worst) the recommendation they would give to the student.

In order to assess the ability of AACORN to make a recommendation, the system selected the list of potential courses. We ran each student through the system to create an initial solution and filtered using current offering constraints and prerequisite constraints. From the set of filtered course recommendations, we picked the top three ranked courses along with three random courses from the remaining set. The final set of six possible recommendations was then shuffled and placed on the assessment worksheets.

The purpose of this experiment is to determine if there is any correlation between the system’s ranking and the ranking of the professors. A high correlation means that the system does a good job of ranking recommendations; conversely, a low correlation means that it does a poor job of ranking.

Because of the small amount of data available, we use a Cohen’s Kappa test for data analysis [3]. This test measures the amount of agreement/disagreement between subjects. We create a matrix where each row corresponds to the rank of the system and each column corresponds to the rank of the professor. The value of cellx,y represents the number of courses that were ranked x for the system and ranked y for a professor. A large number across the diagonal of the matrix indicates agreement and a high correlation. Generally, a Kappa > 0.7 is considered satisfactory.

To calculate the Kappa, we first calculate the total number of agreements, A, as the sum of the diagonal. Next, we calculate the expected frequency of agreements by chance,

[image: image11.wmf]
such that Rowi and Coli are the sum of row i and column i, respectively, and N is the overall total. Finally, we calculate Kappa,

[image: image12.wmf]
For reasons beyond our control, only two professors submitted responses to the experiment. We decided to continue with the evaluation as a proof-of-concept, though there was not enough sample data for a high-quality analysis. In order to compensate, and to prevent a sparse matrix, we grouped every two rankings into a single category. Thus, we have three categories of rank: 1/2, 3/4, and 5/6. The following figure presents the results of the Kappa test.

[image: image13.emf]
Figure 6: Kappa Test Matrix
The Kappa value of 0.2492 indicates that the system does not do a sufficient job of ranking course recommendations. However, the sample is not large enough to make a definitive judgment. Some aspects of the agreement matrix seem promising, and with additional data could result in a completely different Kappa. In particular, the diagonal contains the largest values found in the matrix. Additional study will be necessary to evaluate the ranking algorithm accurately.
9
Conclusions and Future Work

Academic advising is a knowledge-intensive process of assessing a student’s interests and determining the best course progression that satisfies graduation requirements. This paper has presented AACORN, a case-based reasoning system for recommending courses to students. The system reuses the experience of past students in order to infer appropriate courses a student could enroll in the following quarter. This is done through a process of finding similar course history sequences and extracting a relevant recommendation from the intersection.

Initial evaluation of the system shows the research to be promising, although more in-depth study is necessary. A larger, more up-to-date case-base and an acceptable sample of human subjects will be necessary to truly evaluate the system’s performance. However, it does appear that a case-based reasoning system can be a reasonable approach to automatic academic advising. Although it may never replace a human advisor, the system could become a powerful tool for the advisor, or an efficient way for a student to find interesting and relevant courses.

Later iterations of the system will include several major enhancements. In particular, it will include a constraint for filtering course recommendations when a student does not satisfy the prerequisites. It will also include preference satisfaction, allowing a student to interact with and guide the system when making its recommendation. The performance of the system will be improved by focusing on the ranking algorithm and attempting to raise all relevant courses to the top of the recommendation. In addition, a more knowledge-intensive course similarity measure will be developed that attempts to infer semantic context from the textual description of courses.

References

[1]
Aamodt, A. and Plaza, E. Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. AI Communications, 7(1): 39-59, 1994.

[2]
Arcos, J., Grachten, M., and López de Mántaras. Extracting Performers’ Behaviors to Annotate Cases in a CBR System for Musical Tempo Transformations. In Proceedings of the Fifth International Conference on Case-Based Reasoning (ICCBR-03), 2003.

[3]
Bakeman, R. and Gottman, J. (1986). Observing Interaction: An Introduction to Sequential Analysis. Cambridge: Cambridge University Press.

[4]
Belew, R. (2000). Finding Out About: A Cognitive Perspective on Search Engine Technology and the WWW. Cambridge: Cambridge University Press.
[5]
Bogaerts, S. and Leake, D. 2004. IUCBRF: A Framework for Rapid and Modular Case-Based Reasoning System Development.

[6]
Boutilier, C., Brafman, R., Geib, C., and Poole, D. A Constraint-Based Approach to Preference Elicitation and Decision Making. In AAAI Spring Symposium on Qualitative Decision Theory, Stanford, 1997.

[7]
Burke, R. Interactive Critiquing for Catalog Navigation in E-Commerce. Artificial Intelligence Review, 18: 245-267, 2002.

[8]
Mobasher, B. Intelligent Information Retrieval, Lecture Notes. 2005.

[9]
Russell, S. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach. New Jersey: Pearson Education, Inc.

[10]
van Rijsbergen, C. J. Information Retrieval.

[11]
Watson, I. (2003). Applying Knowledge Management: Techniques for Building Corporate Memories. San Francisco: Morgan Kaufmann Publishers.

[12]
Wilson, D. and Martinez, T. Improved Heterogeneous Distance Functions. Journal of Artificial Intelligence Research, 6(1): 1-34, 1997.

[13]
Zhang, K. and Shasha, D. Simple Fast Algorithms for the Editing Distance Between Trees and Related Problems. SIAM Journal of Computing, 18(6): 1245-1262, 1989.

Appendix A: Professor Assessment Handouts

The following pages contain the handouts used for the professor assessment test.

CTI ADVISOR Test

This student has come to you for advice on which class to take next quarter. The following is the course history for the student and six courses that the student is considering enrolling. Rank from 1 to 6 (best to worst) the recommendation you would give the student.

Student 508
Program: MS / Telecommunication Systems - 2003
GPA: 3.69
Courses:

1997-1998 Summer
CSC 225-2010 C++ FOR PROGRAMMERS

A

1998-1999 Autumn
CSC 416-1010 FOUNDATNS OF COMPUTER SCI II

B

1998-1999 Autumn
TDC 463-1010 COMPUTR NETWORKS/DATA SYS

A

1998-1999 Winter
TDC 462-2030 DATA COMMUNICATIONS

A-

1998-1999 Winter
TDC 511-2010 TELECOMMUNICATIONS PRACTICUM

A

1998-1999 Spring
TDC 563-3010 PROTOCOLS/TECH-DATA NETWK

A

1998-1999 Spring
TDC 564-3010 LOCAL AREA NETWORKS

W

1999-2000 Autumn
TDC 464-1010 VOICE COMMUNICATN NETWRKS

B+

1999-2000 Autumn
TDC 565-1010 VOICE & DATA INTEGRATION

B

1999-2000 Winter
TDC 562-2020 COMPUTR-COMMUN NTWK DESGN

A

1999-2000 Spring
TDC 564-3010 LOCAL AREA NETWORKS

A

Waived Courses:

CSC 415 FOUNDATNS OF COMPUTER SCI

TDC 411 COMPUTRS:INFO SYS/TELECOM
Recommendation:

TDC 512 CELLULAR/WIRELESS TELECOM

CSC 224 JAVA FOR PROGRAMMERS

TDC 567 TELECOM SYSTM DESIGN/MGMT

TDC 572 NETWORK SECURITY

TDC 561 NETWORK PROGRAMMING

CSC 449 DATABASE TECHNOLOGIES
How confident are you with your recommendation?

(Very Confident, Confident, Neutral, Unsure, Very Unsure)

What additional information would have helped make your recommendation?
CTI ADVISOR Test

This student has come to you for advice on which class to take next quarter. The following is the course history for the student and six courses that the student is considering enrolling. Rank from 1 to 6 (best to worst) the recommendation you would give the student.

Student 1396
Program: MS / Computer Science - 2000
GPA: 2.80
Courses:

1999-2000 Winter
CSC 215-8080 INTR STRUCT PRGRM USING C
C-

1999-2000 Winter
CSC 260-8020 CLIENT INTRFACE PROGRAMNG
F

1999-2000 Spring
CSC 215-9030 INTR STRUCT PRGRM USING C
B-

1999-2000 Spring
CSC 323-9010 DATA ANLYS/STAT SFTWARE I
A

2000-2001 Autumn
CSC 345-701 COMPUTER ARCHITECTURE

D

2000-2001 Autumn
CSC 415-102 FOUNDATNS OF COMPUTER SCI
B

2000-2001 Winter
CSC 310-802 PRINCIPLES COMPUTER SCI I

B-

2000-2001 Winter
CSC 343-801 INTRO TO OPERATNG SYSTEMS
F

2000-2001 Spring
CSC 343-601 INTRO TO OPERATNG SYSTEMS
A

2000-2001 Spring
CSC 345-901 COMPUTER ARCHITECTURE

FX

2000-2001 Spring
CSC 416-303 FOUNDATNS OF COMPUTER SCI II
C

2001-2002 Autumn
CSC 224-704 JAVA FOR PROGRAMMERS

B+

2001-2002 Autumn
CSC 345-703 COMPUTER ARCHITECTURE

A

2001-2002 Winter
CSC 416-201 FOUNDATNS OF COMPUTER SCI II
A

2001-2002 Winter
CSC 423-201 DATA ANALYSIS/REGRESSION

A

2001-2002 Spring
CSC 428-301 DATA ANALYSIS/EXPERIMENTR
B+

2001-2002 Spring
CSC 491-301 DESIGN/ANALYSIS-ALGORITHM
D

2001-2002 Summer
CSC 449-501 DATABASE TECHNOLOGIES

A

2002-2003 Autumn
CSC 447-101 PROGRAM LANGUAGE CONCEPTS
B+

2002-2003 Autumn
CSC 491-101 DESIGN/ANALYSIS-ALGORITHM
B
Waived Courses:

CSC 309 OBJECT-ORIENTED PROGRAM IN C++
Recommendation:

CSC 451 DATABASE DESIGN

DS 420 FOUNDTN DISTRIBUTD SYSTMS I

SE 452 OBJECT-ORIENTD ENTRPRS COMPUTG

CSC 306 C# FOR PROGRAMMERS

TDC 463 COMPUTR NETWORKS/DATA SYS

SE 450 OBJ-ORIENTED SOFTWARE DEV
How confident are you with your recommendation?

(Very Confident, Confident, Neutral, Unsure, Very Unsure)

What additional information would have helped make your recommendation?
CTI ADVISOR Test

This student has come to you for advice on which class to take next quarter. The following is the course history for the student and six courses that the student is considering enrolling. Rank from 1 to 6 (best to worst) the recommendation you would give the student.

Student 1562
Program: MS / Computer Science - 2001
GPA: 4.00
Courses:

2000-2001 Spring
CSC 225-905 C++ FOR PROGRAMMERS

A

2000-2001 Spring
CSC 415-301 FOUNDATNS OF COMPUTER SCI

A

2000-2001 Summer
CSC 345-501 COMPUTER ARCHITECTURE

A

2001-2002 Autumn
CSC 224-707 JAVA FOR PROGRAMMERS

A

2001-2002 Autumn
CSC 416-104 FOUNDATNS OF COMPUTER SCI II

A

2001-2002 Winter
CSC 343-803 INTRO TO OPERATNG SYSTEMS

A

2001-2002 Winter
CSC 447-201 PROGRAM LANGUAGE CONCEPTS

W

2001-2002 Spring
DS 420-302 FOUNDTN DISTRIBUTD SYSTMS I

A

2001-2002 Summer
CSC 449-501 DATABASE TECHNOLOGIES

A

2002-2003 Autumn
CSC 447-101 PROGRAM LANGUAGE CONCEPTS

A

2002-2003 Autumn
SE 450-102 OBJ-ORIENTED SOFTWARE DEV

A

2002-2003 Winter
CSC 448-203 COMPILER DESIGN

A

2002-2003 Winter
CSC 491-202 DESIGN/ANALYSIS-ALGORITHM

A

2002-2003 Spring
CSC 548-304 ADVANCED COMPILER DESIGN

A

2002-2003 Spring
SE 452-301 OBJECT-ORIENTD ENTRPRS COMPUTG

A
Waived Courses:

CSC 309 OBJECT-ORIENTED PROGRAM IN C++
Recommendation:

TDC 463 COMPUTR NETWORKS/DATA SYS

DS 421 DISTRIBUTD SYSTEMS PROGRAMMING

SE 560 DOCUMENT INTERCHANG/PROCESSING

SE 550 DISTRIBUTED SOFTWARE DEVELPMNT

CSC 454 DATABASE ADMINSTRATN/MANAGEMNT

CSC 452 DATABASE PROGRAMMING
How confident are you with your recommendation?

(Very Confident, Confident, Neutral, Unsure, Very Unsure)

What additional information would have helped make your recommendation?
CTI ADVISOR Test

This student has come to you for advice on which class to take next quarter. The following is the course history for the student and six courses that the student is considering enrolling. Rank from 1 to 6 (best to worst) the recommendation you would give the student.

Student 1682
Program: MS / Telecommunication Systems - 2002
GPA: 3.74
Courses:

1995-1996 Autumn
CSC 215-7040 INTR STRUCT PRGRM USING C

A

1995-1996 Winter
CSC 310-8030 PRINCIPLES COMPUTER SCI I

A

1995-1996 Spring
CSC 415-3030 FOUNDATNS OF COMPUTER SCI

A

1996-1997 Autumn
CSC 343-7020 INTRO TO OPERATNG SYSTEMS

AU

1996-1997 Winter
TDC 411-2020 COMPUTRS:INFO SYS/TELECOM

A

1996-1997 Spring
PHY 405-3010 PHYSCL PRIN TELECOMMUNCTN

A-

1996-1997 Summer
CSC 343-3010 INTRO TO OPERATNG SYSTEMS

B+

1997-1998 Autumn
TDC 461-1020 BASIC COMMUNICATN SYSTEMS

B

1997-1998 Autumn
TDC 476-1010 ECON OF TELECOMM SYSTEMS

A

1997-1998 Winter
TDC 462-2010 DATA COMMUNICATIONS

A

1997-1998 Winter
TDC 562-2010 COMPUTR-COMMUN NTWK DESGN

B

1997-1998 Spring
TDC 463-3010 COMPUTR NETWORKS/DATA SYS

A

1998-1999 Autumn
TDC 464-1010 VOICE COMMUNICATN NETWRKS

A-

1998-1999 Winter
TDC 564-2010 LOCAL AREA NETWORKS

A

1998-1999 Spring
TDC 512-3010 CELLULAR/WIRELESS TELECOM

B+

1998-1999 Spring
TDC 565-3020 VOICE & DATA INTEGRATION

A

1999-2000 Autumn
CSC 225-7020 C++ FOR PROGRAMMERS

A

1999-2000 Autumn
TDC 561-1010 NETWORK PROGRAMMING

A-

1999-2000 Winter
CSC 449-2030 DATABASE TECHNOLOGIES

B

1999-2000 Winter
TDC 511-2010 TELECOMMUNICATIONS PRACTICUM

A
Waived Courses:

CSC 323 DATA ANLYS/STAT SFTWARE I
ECT 270

IS 313

Recommendation:

SE 450 OBJ-ORIENTED SOFTWARE DEV

TDC 514 COMPUTER TELEPHONY

TDC 572 NETWORK SECURITY

CSC 224 JAVA FOR PROGRAMMERS

IS 577 INFO TECH POLICY/STRATEGY

TDC 567 TELECOM SYSTM DESIGN/MGMT
How confident are you with your recommendation?

(Very Confident, Confident, Neutral, Unsure, Very Unsure)

What additional information would have helped make your recommendation?
CTI ADVISOR Test

This student has come to you for advice on which class to take next quarter. The following is the course history for the student and six courses that the student is considering enrolling. Rank from 1 to 6 (best to worst) the recommendation you would give the student.

Student 3026

Program: MS / Information Systems - 2002
GPA: 3.98

Courses:

2002-2003 Autumn
CSC 224-703 JAVA FOR PROGRAMMERS

A-

2002-2003 Winter
IS 421-201 INFO SYSTEMS ANALYSIS

A

2002-2003 Winter
MIS 555-201 MGMT OF INFORMATION TECHNOLOGY
A

2002-2003 Winter
TDC 425-201 VOICE/DATA NETWK FNDMNTLS

A

2002-2003 Spring
CSC 449-302 DATABASE TECHNOLOGIES

A

2002-2003 Spring
IS 422-304 INFORMATION SYSTMS DESIGN

A

2002-2003 Spring
IS 450-301 ENTERPRISE SYSTEM IMPLEMENTATN

A

2002-2003 Summer
IS 556-201 PROJECT MANAGEMENT

A

Waived Courses:

ACC 500 FINANCIAL ACCOUNTING
CSC 323 DATA ANLYS/STAT SFTWARE I
ECT 270
ECT 353 SERVER SIDE WEB APP DEVEL

IS 404

MGT 502 OPERATIONS MANAGEMENT

MKT 555 DECISIONS IN MARKETNG MGT

Recommendation:

IS 560 ENTERPRISE SYSTEMS

HCI 440 USABILITY ENGINEERING

IS 483 INFORMATION SERVICS/OPERATIONS

CSC 451 DATABASE DESIGN

IS 577 INFO TECH POLICY/STRATEGY

IS 549 DATA WAREHOUSING & MINING
How confident are you with your recommendation?

(Very Confident, Confident, Neutral, Unsure, Very Unsure)

What additional information would have helped make your recommendation?
CTI ADVISOR Test

This student has come to you for advice on which class to take next quarter. The following is the course history for the student and six courses that the student is considering enrolling. Rank from 1 to 6 (best to worst) the recommendation you would give the student.

Student 3028

Program: MS / Computer Science - 2002
GPA: 3.63
Courses:

2002-2003 Summer
CSC 451-501 DATABASE DESIGN

A

2002-2003 Summer
TDC 565-501 VOICE & DATA INTEGRATION

A-

2003-2004 Autumn
CSC 447-701 PROGRAM LANGUAGE CONCEPTS
A

2003-2004 Autumn
CSC 491-705 DESIGN/ANALYSIS-ALGORITHM
A

2003-2004 Autumn
CSC 549-701 ADV DATABASE SYSTEMS

A

Waived Courses:

CSC 224 JAVA FOR PROGRAMMERS
CSC 309 OBJECT-ORIENTED PROGRAM IN C++
CSC 343 INTRO TO OPERATNG SYSTEMS
CSC 345 COMPUTER ARCHITECTURE
CSC 415 FOUNDATNS OF COMPUTER SCI
CSC 416 FOUNDATNS OF COMPUTER SCI II
Recommendation:

SE 452 OBJECT-ORIENTD ENTRPRS COMPUTG

CSC 449 DATABASE TECHNOLOGIES

SE 450 OBJ-ORIENTED SOFTWARE DEV

TDC 460 FOUNDATIONS OF COMM SYSTEMS

DS 420 FOUNDTN DISTRIBUTD SYSTMS I

TDC 463 COMPUTR NETWORKS/DATA SYS

How confident are you with your recommendation?

(Very Confident, Confident, Neutral, Unsure, Very Unsure)

What additional information would have helped make your recommendation?
Appendix B: CBR Framework

The basic design of AACORN’s CBR framework is an inverted index seen in many information retrieval systems, with some additional features to support the unique requirements of a case-based reasoning system. The inverted index consists of a data structure that allows bi-directional indexing: Given a case, every feature referenced by the case can be retrieved; and given a feature, every case that references the feature can be retrieved. In addition, every case/feature occurrence can have a feature value assigned to it. This structure gives maximum flexibility to the system. The following sections are a brief summary of the framework functionality. For more detail about the API, see the system’s Javadoc.
Package Structure

The main package of the CBR framework is edu.depaul.cbr. This consists of a number of sub-packages, which represent the components of the framework:

· The system package contains the controller and inverted index for the framework. It acts as a façade and handles all interaction with the framework.

· The representation package contains interfaces required for a case, feature, feature value, and occurrence.

· The query package contains the interface for a query. It also contains retrieval record and solution record interfaces which are used by a query to store retrieved cases and adapted solutions, respectively.

· The retrieval package contains the retrieval strategy interface and includes implementations for k-nearest neighbor and threshold retrieval.

· The similarity package contains the similarity strategy interface and includes implementations for Euclidean distance, Edit distance, Cosine similarity, Dice coefficient similarity, Jaccard coefficient similarity, etc.

· The weight package contains the weighting strategy interface and includes implementations for a constant feature weight, Signal-Noise ratio feature weight, TF.IDF feature weight, etc.

· The adaptation package contains the interface for an adaptation strategy and a simple domain-independent implementation that maps all retrieved cases as the solution to a query.

· The evaluation package contains a number of classes used to evaluate a system. Given a leave-one-out test, a system evaluator can return the average precision and recall of a system, as well as average retrieval time and average adaptation time.

· The constraint package contains the interface for a constraint, which alters the solution of a query based on the constraint implementation. The ConstraintBuilder class is an aggregate implementation of constraint and allows multiple constraints to be applied as a unit.

The main package for AACORN is edu.depaul.advisor. This consists of a number of sub-packages, which mirror the framework package and contain the advisor specific implementations:

· The driver package contains the main method and logic to build the system and run each of the leave-one-out and hill climbing assessment tests. The main method can be called from ant as “ant run”.
· The system package contains static classes used to load student history and course offerings into memory.

· The representation package contains implementations of each advisor specific attribute including catalog, course, grade, instructor, location, program, offering, and term.

System

The CBR framework system package is the main entry point to the framework. The CBRSystem class is a façade to all functionality of the framework. It creates the inverted index and processes queries. It contains methods to access the similarity, weight, retrieval, and adaptation strategies. It also contains methods to enable and disable the system, as well as serialize and de-serialize the case-base. CBRSystem is immutable and must be created via the CBRSystemBuilder class. Any changes to its initialization parameters require that a new object be built.

The CBRSystem controls all functionality via command objects. Updating the inverted index or processing a query is accomplished by creating the appropriate command and executing it. Every command returns a Boolean confirming success. The inverted index can be updated only if the system is disabled, and queries can be processed only if the system is enabled. This ensures the index cannot change while a query is being processed, and allows the system to calculate weights as it is being enabled. Otherwise, weights would be dynamically recalculated after every update to the index or during a query; both alternatives require significantly more processing time.

The inverted index is a data structure containing case records, feature records, and occurrence records. The basic building block is the occurrence record. It contains a case, a feature, and a feature value. In addition, it holds the term frequency and calculated weight of the occurrence.

A feature record contains the list of cases that reference the feature and the list of occurrence records to which it belongs. In addition, it holds the inverse document frequency and calculated weight of the feature.

A case record contains the list of features that are referenced by the case and the list of occurrence records to which it belongs. It has methods to calculate the sum of the squares of the referenced features or the vector norm of the referenced features. It also has a method calculate the dot product with a second case record.

A case record supports a hierarchy of features. A feature may consist of any number of sub-features, and so on. This is a one-to-many relationship; a feature may have any number of children, but only one parent. When calculating similarity, this hierarchy is traversed recursively to determine the overall similarity. Further complicating the issue, each feature may contain more than one associated feature value. A case record has methods to retrieve the entire set of feature values or the highest ranked value for a given feature.

The system package is the only package containing mutable objects. However, no mutable object is accessible outside the package and so prevents any inadvertent manipulation of the data. All data manipulation is handled through commands, as discussed above.

Representation

Representation in the CBR framework consists of a case, feature, and feature value. In addition, there is an occurrence, which is a composite of these. As stated in previous sections, an occurrence is an instance of a feature within a case and has an associated feature value.

A case and feature consist of an id and description. The id can be any object that uniquely identifies the case or feature, and is specific to the domain. A feature also must contain a reference to its parent. There are two base features, problem and solution, from which every other feature must be derived. This allows the flexibility of a hierarchy of features or a flat feature structure as necessary. Each feature may have its own unique weighting strategy, or a parent feature may determine the weighting strategy of its children.

A feature value is an interface with one method to calculate the distance from a second feature value. Any implementation of this method should return a normalized number between 0 and 1, where 1 means the features are totally dissimilar and 0 means they are equal. There are standard feature values corresponding to Integer and Double native wrapper classes, however in most cases it is necessary to create a domain specific feature value. In AACORN, the implemented feature values are catalog, course, offering, program, and term.
Queries

A query is the structure used to represent a problem posed to the CBR framework and the solution returned. The problem is a case record, containing features and a feature values. The solution is broken into two parts. The first is a collection of similar cases returned by the system and the second is the adapted solution built using the similar cases.

Each similar case is returned in a retrieval record that contains the similarity rank. The adapted solution is a collection of solution records. A solution record is simply an occurrence with the additional property of a rank value. Thus, the solution must conform to a feature/feature value representation, but it allows the solution to be persisted in the inverted index. In addition, the system evaluator can use set algebra to calculate recall and precision, because the expected solution can be stored in the problem. These benefits outweigh the simplicity of allowing the solution to be any object type.

A query is mutable, but can only be changed by the system when executing a process query command. This prevents a problem from being changed after processing or a solution from being manually edited. It requires the use of a query builder to create the problem. After a query has been processed, it cannot be processed again; however, any number of constraints may be applied. A constraint does not affect the internal query solution, but instead returns a subset of solution records that satisfies the constraint.

Example

The following is a simple example of building a system and processing a query. It is not a complete example, and is present only to illustrate the overall usage of the framework.

 CBRSystem system = AdvisorSystem.factory.build(properties);

 AdvisorCaseBase.instance.build(system);

 system.execute(system.cmdSetEnabled(true));

 Query query = Query.factory.build(system, student);

 system.execute(system.cmdProcessQuery(query));

 ConstraintBuilder builder = ConstraintBuilder.factory.build();

 builder.addFactory(ScheduleConstraint.factory);

 builder.addFactory(PrerequisiteConstraint.factory);

 Set recommendation = builder.toConstraint().apply(query);

Z

Y

W

X

Z

Y

W

X

Z

Y

W

X

Student A

Student C

Student B

_1179501315.vsd
Table

Data

Student Case

Academic Program

Curriculum Term

GPA

Course History

Course

Course

Catalog Information

Enrollment Offering

Student
Grade

Description

Catalog Number

Section Number

Term

Location

Instructor

Time & Day

. . .

_1180297464.unknown

_1180297531.unknown

_1179510155.unknown

_1180279669.xls
Sheet1

		

				Professor

		System				1/2		3/4		5/6

				1/2		10		7		6		23				33

				3/4		9		9		3		21

				5/6		4		4		14		22

						23		20		23		66

				Kappa =								0.2492244054

						8.0151515152		6.3636363636		7.6666666667		22.0454545455

Sheet2

		

Sheet3

		

_1179415613.vsd
Data

Cluster

Student Data

Retrieval

Constraint Filtering

Case Histories

Student Constraints

Filtered Courses

Ranked Courses

Adaptation

Recommendation

Current
Schedule

Course Prerequisite Knowledge

Academic Program Knowledge

_1178965862.unknown

