

Re
al

-T
im

e
M

ul
tit

hr
ea

de
d

Ar
ch

ite
ct

ur
e

Sy
lla

bu
s –

 2
7

M
ar

ch
 2

01
8

v
1.

0

1

Real-Time Multithreaded Architecture Spring 2018

CSC 388

instructor: Ed Keenan
email: ekeenan2@depaul.edu
office hours: Wed 4-5pm Office, 9-10 Classroom or by email appointment
office: CDM 830
phone: (312)362-6747
website: piazza.com/depaul/spring2018/csc388588 (Preferred communication)
lecture: CDM 216, Tuesday 5:45-9:00pm
Desired to Learn (D2L): d2l.depaul.edu (Grades, Viewing lectures, Announcements)

Version Control: perforce: 140.192.39.61:1666

Description:

Real-time constrained multithreaded architecture. Topics include multithreaded handle development,
inter-thread communication, creating systems for user-defined callbacks, asynchronous loading and
streaming of resources, non-blocking threading synchronization, design patterns and data driven
messaging with time delivery constraints Exploration of multithreaded interfaces to maintain
uniqueness and control for contented resources. Wrapping and integrating a multithreaded solution
into an application will be analyzed. Students will design, develop and implement a multithreaded real-
time application (i.e. Audio engine) that integrates existing single and multithreaded middleware
libraries.

Prerequisites:
• GAM 372 or (CSC 361 and SE 350)

Learning Goals:
• Students will design, development and implement a multithreaded application with real-time

constraints.
• Students will design and implement custom Handles to control resource contention.
• Students will explore inter-thread communication with safe data queuing.
• Students will design and implement user callbacks passed and tunneled between threads.
• Students will implement asynchronous loading and streaming of runtime resources.
• Students will explore interface challenges of multithreaded applications
• Students will integrate an existing middleware multithreaded solution into their architecture.

mailto:ekeenan2@depaul.edu

Re
al

-T
im

e
M

ul
tit

hr
ea

de
d

Ar
ch

ite
ct

ur
e

Sy
lla

bu
s –

 2
7

M
ar

ch
 2

01
8

v
1.

0

2

Grading
Programming Assignments
 25% - Weekly Code/Video Submissions (approx. 8 assignments)
Week 6

25% - Milestone 1: Prototype: Basics Audio Engine
Week 11

50% - Milestone 2: Finished Audio Engine, Demo, and Documentation

Textbooks and printed resources
Course material will be many supplied through class notes, handouts or online links.

• Will be provided by the instructor
• Lectures, links, SDKs and other corresponding material

Software

• Microsoft Visual Studio 2017 Enterprise Edition (not Community)
o MSDNAA Depaul – Visual Studio 2017 Enterprise

 C++ and C# install (future classes)
o Any other variants are not used in this class
o Students are responsible keeping their development tools working

• Perforce Server
o Download and configuration instructions will be provided in class
o Perforce – Helix Visual Client (p4v) - www.perforce.com

 Server address: 140.192.39.61:1666

Topics will include:

Threads

• Concurrency
• Spawning and coordinating threads in C++
• Process, thread, stack data ownership

Handles

• Inter-process and inter-thread resource contention
• Atomic identification for resource pooling
• Thread safety and exception safety

Inter-Thread communication

• By direction queuing between threads
• Circular queues without conditional wrapping
• Updating and processing request between threads

https://e5.onthehub.com/WebStore/OfferingsOfMajorVersionList.aspx?pmv=4fec9f1d-6d0a-e711-9427-b8ca3a5db7a1&cmi_mnuMain=bdba23cf-e05e-e011-971f-0030487d8897&ws=0c08c3d0-f86f-e011-971f-0030487d8897&vsro=8
https://e5.onthehub.com/WebStore/OfferingsOfMajorVersionList.aspx?pmv=4fec9f1d-6d0a-e711-9427-b8ca3a5db7a1&cmi_mnuMain=bdba23cf-e05e-e011-971f-0030487d8897&ws=0c08c3d0-f86f-e011-971f-0030487d8897&vsro=8

Re
al

-T
im

e
M

ul
tit

hr
ea

de
d

Ar
ch

ite
ct

ur
e

Sy
lla

bu
s –

 2
7

M
ar

ch
 2

01
8

v
1.

0

3

Commands Passing

• Commands originated on main thread being services on other threads
• Tunneling commands
• Access data and relationship of commands variable output passing in a queue

XAudio2 Drivers

• Microsoft Audio driver
• Multithreaded audio system with its own threads, voices, callbacks, data marshaling
• Audio basics – sample rate, format, IFF file format, etc.

Callbacks

• Audio Driver callbacks interfacing to Main thread
• User define callback architecture – extending base classes
• Marshalling callbacks between threads and thread hopping

Asynchronous loading

• Spawning multiple threads for file loading
• Coordinating loading between threads with signaling
• Zero blocking atomic data structure for loading

Thread Management

• Thread pooling and reuse management
• Controlling data on the stacks
• Ownership issues

Design Patterns

• Complexity added with multithreaded environment on Design Patterns
• Multiple threads interactions for Visitor, Command, Observer, and Singletons

Timer Coordination

• Single coordinating clocked based events on Main thread
• Adaptive scripting with a resolution Audio thread

Debugging / Tracking

• Debugging and tracking with I/O and printing
• Demos and interactive scenario development
• Resource tracking

Re
al

-T
im

e
M

ul
tit

hr
ea

de
d

Ar
ch

ite
ct

ur
e

Sy
lla

bu
s –

 2
7

M
ar

ch
 2

01
8

v
1.

0

4

Milestone 1: Prototype Basics Audio Systems (25%)

Students will design and build simple audio systems with fundamental multithreaded components.
The goal of this milestone is to understand the primitive features in the XAudio2 API and building
blocks for a more complex full feature multithreaded system (final project). Students will explore
the internal features and resource usage of the XAudio2 API such as Audio playback, data
management, Callbacks and event sequence synchronization. In addition to the Audio system
basics, students will develop multithreaded components such as custom Handles, inter-threading
queuing system, thread tracking, and multithreaded testing environment. This milestone is a shake
out many mini-demos to prove that the completed audio engine is achievable. Engine in C++, with
video and summary of each component.

• Several Mini-demo prototypes:

o Playback
 Voices
 Attributes (Volume, Pan, Pitch, etc.) control
 Looping
 Mixing
 Loading/unloading source wave data
 XAudio2 Callbacks

o Audio Management
 Handles
 Buffer reuse/control/tracking
 Voice management
 Streaming

o Scripting
 Timer events
 Coordinating between threads

o Stitching
 Seamless transitions between voices

• Complete Code base
o 100% working game stored in perforce
o Needs to compile and run
o Not compiling or working (FAIL)

• Feature List
o Self-grading feature checklist (supplied PDF)
o Link to Video Demo

• Video Demo
o YouTube Video Demo
o Demo of the game
o Identifying features in the game
o 5-10 minutes with clear audio commentary

Re
al

-T
im

e
M

ul
tit

hr
ea

de
d

Ar
ch

ite
ct

ur
e

Sy
lla

bu
s –

 2
7

M
ar

ch
 2

01
8

v
1.

0

5

Milestone 2: Finished Audio Engine (50%)

Students will design and build a single multithread runtime audio game engine library written in
C++. This system has many complex real-world features and constraints to all single threaded
applications to interface with multithreaded engine. Required features of this engine are
asynchronous real-time loading/streaming, dynamic preemptive priority system, seamless
transitioning between discrete sound calls without application intervention, application define user
callbacks, data driven script playback and more. In addition, a compelling demo to show off the
newly constructed engine.

• Single integrated C++ library

o Incorporates the components fully working from Milestone1
o Static Library or DLL

• Required Features
o Basics audio features (milestone 1)
o Priority system
o User Callbacks
o Asynchronous file loading / streaming
o Interpretive Scripting management

 NOT Required for Undergrads
 Can be implemented for extra credit

• Compelling Demo
o Show off your work

• Documentation
o UML diagramming of the system
o Description of the features
o Architecture design document (TBD)

• Complete Code base
o 100% working game stored in perforce
o Needs to compile and run
o Not compiling or working (FAIL)

• Feature List
o Self-grading feature checklist (supplied PDF)
o Link to Video Demo

• Video Demo
o YouTube Video Demo
o Demo of the game
o Identifying features in the game
o 5-10 minutes with clear audio commentary

Re
al

-T
im

e
M

ul
tit

hr
ea

de
d

Ar
ch

ite
ct

ur
e

Sy
lla

bu
s –

 2
7

M
ar

ch
 2

01
8

v
1.

0

6

Perforce Submissions

• Everyone is expected to submit several submissions to perforce a week.
o Minimum of five significant (real) submissions on three separate days.
o To promote incremental development and prevent last day rush.
o Grade deduction will occur if not followed

• The biggest reason students get into trouble with software design:
o Not starting the project early
o Not working on the material frequently enough
o Taking too large of a bite(byte) of the design

• Both are minimized with this Perforce RULE
• Even my simplest programs take 10-20 submissions.

o For these project assignments, my average is 40-400 submissions, so five will be no problem.
• Detailed perforce changelist comments are expected

Piazza Discussion forum

• Statistics show: students who participate more and help other students do better!
o The correlation is ridiculous!

• Poor understanding / poor participation.
• Great understanding / Great participation

o As you master the material, help others learn!
• Want to be a Master programmer so master it!

• Everyone is expected and encouraged to participate on the Piazza discussion forum. All class-related
discussion here this term.

o At least one real question or response per week from every student.

• Everyone is expected to keep up with the material on Piazza and are responsible for its content.
Critical class updates and directions will be presented there.

o Not participating or reading the material on Piazza is NOT an Excuse.

• All correspondence that is not personal in nature should be vectored through Piazza
o Sensitive material, use Piazza private note, not email.

• The quicker you begin asking questions on Piazza (rather than via emails), the quicker you will
benefit from the collective knowledge of your classmates and instructors. I encourage you to ask
questions when you are struggling to understand a concept.

• Keep the forum professional and positive, help each other out.
o Karma really pays off here.
o Help each other whenever you can.

• There will be a time when you will need help from the class (trust me).

NOTE: Do NOT post until you have watched the entire lecture FIRST (in class or online)

 This will prevent frustration on all sides (members asking or answering questions)

Re
al

-T
im

e
M

ul
tit

hr
ea

de
d

Ar
ch

ite
ct

ur
e

Sy
lla

bu
s –

 2
7

M
ar

ch
 2

01
8

v
1.

0

7

Collaborating together on programming assignments
• You are encouraged to work together

o Use the Piazza forums heavy
o Even share your material with others in the common directory

 Obviously not the answers
• Everyone is 100% responsible for the work they do.

o If you get help with a section of code,
o Please refactor the code the snot out of it

 Comment and understand that material
 Transform the code to make it yours

o Be able to answer any question regarding the code you commit
• System for Detecting Software Plagiarism

o We will be using MOSS - Measure of Software Similarity (Stanford University)
 Indicates possible code infringements (plagiarism)
 MOSS - will detect the similarity independent of naming convention, indentation

style or formatting, it compares abstract syntax tree of your code.
o I will pursue any plagiarism/integrity violations aggressively, arguing for full expulsion from

the university for the offenders.
 Don’t put me or you in this scenario

• If you gain significant support / help from another student or website
o Fully disclose the support / help you had in a Readme.txt file submitted with your

assignments.
 Disclosing the help, is not permission for copying the code.
 Only there to clarify and acknowledge help you were given from a fellow student.

• Modifying any Unit Test or Project setting to alter the outcome results is also an Academic Integrity
Violation

• If you are stuck and find yourself even tempted to plagiarize
o Ask for help!!!!

 Use on Piazza -> Visit during offices hours, make an appointment
 Don't ever compromise your integrity!

• Material was uniquely created for this Class.
o By the process of tuition, you "paid" for the contents and material of this class.

 Do not share this copyrighted material in any form
 It is design for your personal use, while enrolled in the Class.

o Do NOT post any content or revealing material to any external website or forum outside of
this class.
 The Class Piazza forum is provided for this service, ask questions there, not on the

internet (i.e. StackOverflow and other software forums)

Re
al

-T
im

e
M

ul
tit

hr
ea

de
d

Ar
ch

ite
ct

ur
e

Sy
lla

bu
s –

 2
7

M
ar

ch
 2

01
8

v
1.

0

8

• After you leave this class
o You are expressly FORBIDDEN to provide or share the content with others.
o Academic Integrity Violations can still be applied to students who provide material support

to other students even after completion of the class.
• Just follow the golden rule:

o "I have neither given, nor received, nor have I tolerated others' use of unauthorized aid."

Miscellaneous

• Late Policies
o Due dates and times are verified by the submission record on the Perforce Server

 No extensions are allowed
o All assignments need to be compiling without warnings

 Failure to compile “as-is” results in a 0 for the grade
• Crashing

o For assignments that work for a set duration (long enough to demo all the features) but then
crash after time.

 A deduction of 20% is applied to the grade of that assignment
 Crash – program locking up or quitting unexpectedly

Re
al

-T
im

e
M

ul
tit

hr
ea

de
d

Ar
ch

ite
ct

ur
e

Sy
lla

bu
s –

 2
7

M
ar

ch
 2

01
8

v
1.

0

9

Tentative Class Schedule

Date Lecture Activity Due
Week 1 Course Overview PA1 – Xaudio2 play Compiler

 Audio Engine Features

 Perforce

Week 2 XAudio2 PA2 – Audio Voices PA1

 Threads

 Sample Game
Week 3 Handles PA3 - Handles PA2

 Exception Safety

Week 4 Inter-Thread Communication PA4 - XAudio Callbacks PA3

 Callbacks

Week 5 Testing Audio MS1 - Milestone 1 PA4

Command Passing

Week 6 Audio Threads PA5 - Audio Threads MS1

 Thread Management

Week 7 Asynchronous loading PA6 - Async Loading PA5

 Multithreaded Patterns

Week 8 Priority System PA7 - Priority PA6

 Scripting systems

Week 9 Timer Coordination PA8 - Scripting PA7

 Week 10 Debugging / Tracking Final Project PA8

Week 11

 Final Project

 April 1, 2018 Last day to add classes to SQ2018 schedule
 April 6, 2018 Last day to drop classes with no penalty, Last day to select pass/fail option
 April 7, 2018 Grades of “W” assigned for SQ2018 classes dropped on or after this day
 April 13, 2018 Last day to select auditor status
 May 11, 2018 Last day to withdraw from SQ2018 classes

Re
al

-T
im

e
M

ul
tit

hr
ea

de
d

Ar
ch

ite
ct

ur
e

Sy
lla

bu
s –

 2
7

M
ar

ch
 2

01
8

v
1.

0

1
0

Course Policies

Changes to Syllabus

This syllabus is subject to change as necessary during the quarter. If a change occurs, it will be thoroughly
addressed during class, posted under Announcements in D2L and sent via email.

Online Course Evaluations

Evaluations are a way for students to provide valuable feedback regarding their instructor and the course. Detailed
feedback will enable the instructor to continuously tailor teaching methods and course content to meet the
learning goals of the course and the academic needs of the students. They are a requirement of the course and are
key to continue to provide you with the highest quality of teaching. The evaluations are anonymous; the instructor
and administration do not track who entered what responses. A program is used to check if the student completed
the evaluations, but the evaluation is completely separate from the student’s identity. Since 100% participation is
our goal, students are sent periodic reminders over three weeks. Students do not receive reminders once they
complete the evaluation. Students complete the evaluation online in CampusConnect.

Academic Integrity and Plagiarism

This course will be subject to the university's academic integrity policy. More information can be found
at http://academicintegrity.depaul.edu/. If you have any questions be sure to consult with your professor.

Academic Policies

All students are required to manage their class schedules each term in accordance with the deadlines for enrolling
and withdrawing as indicated in the University Academic Calendar. Information on enrollment, withdrawal,
grading and incompletes can be found at: cdm.depaul.edu/enrollment.

Students with Disabilities

Students who feel they may need an accommodation based on the impact of a disability should contact the
instructor privately to discuss their specific needs. All discussions will remain confidential.
To ensure that you receive the most appropriate accommodation based on your needs, contact the instructor as
early as possible in the quarter (preferably within the first week of class), and make sure that you have contacted
the Center for Students with Disabilities (CSD) at: csd@depaul.edu.

Lewis Center 1420, 25 East Jackson Blvd.
Phone number: (312)362-8002
Fax: (312)362-6544
TTY: (773)325.7296

Retroactive withdrawal

This policy exists to assist students for whom extenuating circumstances prevented them from meeting the
withdrawal deadline. During their college career students may be allowed one medical/personal administrative
withdrawal and one college office administrative withdrawal, each for one or more courses in a single term.
Repeated requests will not be considered. Submitting an appeal for retroactive withdrawal does not guarantee
approval. Information on enrollment, withdrawal, grading and incompletes can be found at:
http://www.cdm.depaul.edu/Enrollment-Policies.aspx

https://campusconnect.depaul.edu/
http://academicintegrity.depaul.edu/
http://oaa.depaul.edu/what/calendar.jsp
http://cdm.depaul.edu/enrollment
mailto:csd@depaul.edu
http://www.cdm.depaul.edu/Current%20Students/Pages/Enrollment-Policies.aspx

